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PREFACE

The Final Technical Report of the Data Management System Study is sub-

mitted to NASA/ERC by AUERBACH Corporation in accordance with Purchase Order

No. NAS 15-562. It covers the period of performance from May 15, 1967 to March31,

1968 and summarizes the results of the four phases of this project:

Phase 1:

Phase 2:

Phase 3:

Phase 4:

Investigation of System Features

Evaluation of Systems

System Concepts

Prototype System Specification.
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SUMMARY

The study of automatic computation is the study of information structures

and their transformation. A recent book on current technology* has adopted that point

of view in attempting to formulate an underlying theory or framework for the study of

computer science. There are two parallel views of information structures which have

evolved in the short history of computer science, and which will continue to play an

important part of that field.

In the first view, the process of programming and computation is concerned

with the manipulation of "rectangular" cell structures in an address space. The cells

are passive registers for the storage of information, active machine registers for data

transformation, containers for holding program variables, arrays, etc. They share

the property that they are (or can be considered} locations in some address space.

This view forms the computational framework of the assembly language programmer.

He reduces an algorithm to the problems of allocation of information to cells, and the

logistics of cell movement and transformation within a mosaic of address spaces.

Although he deals in symbols rather than numerical addresses, he knows that the

symbols merely stand for cell locations and he deals with them accordingly.

In the second view, programming and computation are concerned with the

algebraic manipulation of symbols which stand for scalars, arrays, and other struc-

tured items. These items have properties {they are names, quantities in various codes,

logical values, etc., and may be fixed or variable in size, etc. ) and they have relation-

ships to each other. Relationships such as ordering, inclusion, and association {class

membership} may be defined. This second view then is that of the problem-oriented

(e. g., compiler} language programmer. He is not concerned with space allocation or

cell logistics but rather with relational or logical information structures and their

transformation and algebraic manipulation.

The first view is more "machine oriented" than the second, and in some

sense the relational structures of the second must be transformed into the cell domain

*P. Wegner, Programming Languages, Information Structures, and Machine
Organization. McGraw-Hill, 1968.
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before they can be operated upon by the machine. Modern computing machinery,

through the use of address mapping hardware, makes it possible to create many

independent address space (cell) structures which are bound to the real address space

of the computer at the latest possible time (execution time).

The Coherent System developed in this report demonstrates that these two

views can and should coexist in the File System and executive software of an advanced

computing complex. The Coherent System maintains an on-going data base which is

viewed as a common resource for all its users. This data base contains all system

and user program and data structures and can be utilized at both the item structure

and cell structure levels.

The problem or goal-oriented user will view the programs of the computing

facility as a set of operators which can operate on items which he supplies interactively,

or on items in the data base which he can name. The programmer, on the other hand,

will use the system to create, manage, and manipulate symbolically named cell struc-

tures, both as operators {programs) and operands.

To accomplish this, the Coherent System is composed of three main implic-

itly active components plus a set of generalized operators or support functions. The

implicitly active components are the Job Management System, the Internal File System,

and the External File System. The support functions are:

(1)

(2)

Those system jobs which allow the logical item
structures, and the jobs that manipulate them, to
be defined to the system.

Those jobs which allow the structures to be indexed,
searched, retrieved, restructured, etc.

The Job Management System is that component which:

(i)

(2)

(3)

(4)

Interfaces with the interactive user

Establishes his access rights

Reacts to his commands

Schedules the facilities of the system

-2-



(5)

(6)

(7)

Binds the program variables according to the
requirements of the job specification

Interpolates implicit or explicit conditional

item access and restructure operations

Manages and sequences the tasks which comprise
the job.

The Internal File System is that component which interfaces with the job

task and Job Management System to provide services at the item level. The Internal

File System has cognizance of , and management responsibility for, the data pool,

a structured item which contains all subsystem directories and tables as well as the

common data base of the users.

The External File System is that component which interfaces with the job

task, time-sharing monitor and hardware, and Internal File System to provide services

at the cell level. A symbolically named contiguous sequence of cells is called a train.

Trains may be referenced symbolically, and train cells may be addressed relative to

the head of a train. The External File System has cognizance of, and management

responsibility for, the System Virtual Store, an address space for the Data Pool,

those trains which comprise the program library, and data trains managed at the cell

level.

This report develops these concepts after discussing system criteria and

examining the features of several existing and proposed file systems. The structure

and functional specification of a prototype Coherent System are developed. It is not

the intent of this report to achieve a complete system specification, nor is such an

objective claimed. In particular, considerable detail design must be carried out in

the area of the Job Management System and the System Support Functions. It has been

demonstrated, however, that a Coherent System which offers a new dimension of

service to the problem or goal-oriented user in an interactive real-time environment

can be developed.

-3-
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SECTION I. INTRODUCTION

1.1 SCOPE OF STUDY

The Computer Research Laboratory of NASA's Electronic Research Center is

responsible for developing the basic computer techniques and systems to be used in con-

nection with NASA's post-Apollo space missions. These techniques, although not specific

to particular space projects, are expected to influence or be adapted to space projects

which will be operational from 1975 to 1985.

The Data Management System Study is the first phase of a program which will

lead to the development of techniques for handling the vast amounts of digital data asso-

ciated with the control and scientific experimental aspects of post-Apollo missions. The

study consists of four phases, which are documented in this report:

(1) investigation of data management system features

(2) evaluation of current and proposed systems

(3) development of system concepts

(4) specification of a prototype system.

1-1
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The problem environment of the data management system is assumed to be

multiuser and multifunctional; it will include such functions as:

• Tracking and trajectory calculations

• Monitoring

• Recording and control of experiments

• Control of spacecraft maneuvers

Data processing tasks, e.g. , inventory control and information
retrieval from stored libraries

General scientific computing performed in conjunction with
on-board experiments

Liaison and data communication between ground-support and
spaceborne computer systems.

Consequently, the data management system is assumed to be oriented towards a time-

sharing mode of operation in which interactive and noninteractive tasks coexist.

The problem can be characterized by the following aspects:

(1) The need to maintain and access a large, on-going data

base of scientific data, programs, and system tables

(2) The need to provide simultaneous access to the data by a
number of scientists, technicians, programmers, and real-time
processes

(3) The need to accommodate real-time tasks concerned with the

control of spacecraft and experiments, the telemetry of experi-
mental data, and the communication and message control of
experimental and control information

(4) The availability of high-performance computers, memory
systems, and input and display devices.

The scope of study encompasses the following areas:

(1) Job Management System (command language and job control)

(2) Internal File System (data definition language, directory
structure, and logical data services)

(3) External File System (secondary storage management and

physical data services).

1-2
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The areas of procedural languages and translators, time-sharing and multi-

programming control, and machine organization and configuration are outside the scope

of the study. Also outside the scope of this study are specific mission-dependent

cons ide r at ions.

The hardware environment of the data management system is assumed to have

very broad capabilities. It can be expected that in the post-Apollo era, very high pro-

cessor speeds (possibly with multiprocessing configurations) and very large capacity

random-access storage devices will be available. The hardware system should, there-

fore, impose minimum limitations on the structure and functioning of the data management

system.

Since the External File System performs many functions normally incorporated

in a time-sharing executive, it seems reasonable to design the time-sharing executive in

conjunction with the File System so that each can take advantage of the functions provided

by the other. The design of programming language translators, both at the compiler and

assembler levels, should also be influenced by the data management services available.

1.2 CHARACTERIZATION OF THE SYSTEM

The design perspective for the data management system can best be expressed

by first describing some gross characteristics which have been taken as a model for the

computation facility as a whole.

(1)

(2)

Multinse

The system to be developed is a multiuse system. At any one
moment it may be used for many independent tasks of different
character, such as interactive program development, scientific
computation, data retrieval, and real-time control. This is
in antithesis to a system which is dedicated to a single use,
such as airline reservations or process control.

On-Going Data Base

The system has the responsibility for maintaining the integrity
of an on-going data base which, except during certain updating
operations, is always accessible whether or not it is actively
being used.

1-3
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(3)

(4)

(5)

(6)

(7)

Common Data Base

The data base should be capable of being viewed as a resource

which is common to many users and processes which may or

may not be externally coordinated. The common data base

must be protected from collisions of simultaneous use, and

access rights may be defined and checked so that data security

is not violated. The data, in this sense, may "belong" to

more than one user, process, or application, and may have a

life which transcends any one of them.

Job Library

The system should file and remember the definition of commands

and jobs so that highly-parameterized, general-purpose pro-
grams can be used in different ways in different processes, yet

be initiated simply by invoking prestored job descriptions.

Program Coherence

It should be possible to expand the command repertoire of the

system by simply cataloging new programs and job descriptions.
All programs and subsystems should be "coherent" in that a

common command directory, and directory search routines
should be used, and standard methods of program call, param-
eter binding, and result communication should be employed.

The effect of program coherence is to make all existing system
programs the "tools" of any system user or tool maker.

Control Coherence

It should be possible to develop lower strata of the command

directory within the confines of a job so that, in effect, sub-
systems can be constructed as if they interface with a single
user. Commands issued within the subsystem should be inter-

preted via the local directory. If no entry is found, the next

higher level directory is searched. The motive for this con-
trol philosophy is to permit decentralized systems to be
developed and used independently without loss of control at

the highest level, and without the need for command uniqueness
outside a local domain.

Prerequisite Scheduling

In addition to a job definition, the user may define a condition

which must be satisfied before the Job is to be executed. The
condition may involve independent external events, the value of

data base items, an external message (e. g. , job request),
the value of a real-time clock or interval timer, or a combination

of these. This results in a system which is far more flexible
than one which is based on operator actions alone. It permits

the coexistence of jobs which are interacting with the user at
the console, real-time control functions triggered by a timer,

1-4
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real-time control functions triggered by asynchronous external
events or the data base state, communication message triggered
tasks, and background low-priority data processing or monitoring
tasks.

Real-Time Scheduling

Deadlines may be assigned to jobs, either at the time of defini-
tion, as for periodic real-time tasks, or at the time of job run
request. Priorities may be assigned to resolve conflicts of
competing jobs when the system is saturated and deadlines must
be violated.

1.3 THE COHERENT SYSTEM STRUCTURE

Because the organization and functional design of the system described in this

report have achieved a new degree of coherence between control functions, data manage-

ment functions, system support functions, and mission-specific functions, the overall

system will be referred to as the Coherent System. The overall structure of the Coherent

System is shown in Figure 1-1. The system software, which is the main subject of this

report, consists of the Job Management System, the File System, and a set of System

Support Functions. The Job Management System and File System directly furnish execu-

tive control and data services, respectively, to all jobs.

The users also have available to them, in their repertoire of commands, a set

of System Support Functions which perform such basic necessary services as item and

Job definition, query, data maintenance, and message processing. The Job Management

System and the file systems, together with the System Support Functions, are called the

Coherent System.. The File System is composed of the Internal File System (IFS) and the

External File System (EFS).

The division of responsibility between the Internal File System and the External

File System is determined by whether the service is provided on the basis of the logical

data entity, called the item, or the physical data entity, called the cell. The IFSmanages

the item, or composite logical data structure, and the EFS handles the composite physical

data structure, called the cell. Each cell should be thought of as an address space which

fits into a larger address space as a mosaic. The largest address space is called the

"virtual store." The EFS also manages the allocation of tracks (fixed addressable space)

on external devices to trains (relocatable strings of cells). These definitions are summa-

rized in the following glossary.

1-5
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Job Management System (JMS) - System component which recognizes
commands, schedules jobs, provides task-to-task linking, and binds
program parameters.

File System -- System element which manages access to data and
storage space. It is made up of the IFS and EFS.

External File System (EFS) -- System component which manages
the access to blocks and allocates trains to tracks on physical media.

Internal File System (IFS) -- System component which manages the
access to items. It allocates and formats blocks and interfaces with
the EFS at the block or higher cell level.

T__rac__kk-- A contiguous addressable storage area on a physical medium,
allocated to a train by the EFS.

TraIn -- A string of one or more consecutive cells, subject to move-
ment from track to track by the EFS. A train is an arbitrarily long
contiguous data element which is symbolically named by the user and
is undefined to the IFS. It is defined to the EFS, and accessed
through the EFS.

Cell -- One of a number of fixed-length data entities which is symboli-
cally addressable by the system user. The lowest level cell (the
bit) may be recognized only by the CPU; a higher level cell, such
as the byte or word, may be recognized by the I/O channel. A still
higher level cell, such as the block, may be recognized by the EFS.
Thus, cells are a nested or a tree structure of storage compartments
with the lowest level fixed. The entire virtual store of the system
may be thought of as the highest level cell.

Item -- A data entity whose name and structure are known to the IFS,
and which is accessed only by the IFS. Several items may be allocated
to the same block by the IFS, and a single item may extend over
several blocks.

Tas___k-- A program which has been defined and bound as a job or job
component.

Jo___bb-- An entity whose name and formal parameters are assigned by
the user, and defined in terms of previously defined programs and
jobs.

1-7
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SECTIONII. SYSTEM FEATURES

This section discusses the system features which are pertinent to the NASA

data management system. In effect, these features represent the criteria by which the

design approaches to be studied will be evaluated. These features are presented from

four points of view:

(1)

(2)

(3)

Design Objectives -- Discusses the overall goals of the

system, without regard to the various ways in which these
goals may be realized.

Operations -- Discusses the various system functions and
capabilities for accomplishing the design objectives.

Structures -- Discusses the system components (i. e., tables,
data structures, and program module structures, their com-

position and interrelationships) used to perform system
operations.

(4) L. anguage Elements -- Discusses the system commands and
service calls which may provide an appropriate interface

with the system users and programmers.

The JMS, IFS, and EFS are discussed separately, but each follows the pre-

ceding breakdown. These system features are summarized in Table 2-1.
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2.1 INTERNAL FILE SYSTEM FEATURES

The IFS features summarized in Table 2-1 are discussed in the following

paragraphs.

2. I. 1 Design Objectives

2.1.1.1 Responsiveness. The primary design objective of the IFS should be system

responsiveness to user needs. To the extent that the user deals directly with the IFS,

it should be easy to use and learn. It must provide quick response to service requests,

and rapid handling of search and update operations.

2.1.1.2 Adaptability. The IFS must be capable of adapting to a wide variety of user

needs and environmental changes. In order to extend the useful life of various parts of

the system and to minimize the implications of changes, the logical structure of data

should be kept independent of both the EFS and the using programs. The system should

also be able to combine and use data in unforeseen ways, so that the data structures and

organization do not rigidly determine the ways in which data may be used. Finally, the

user should be allowed to define his own languages and commands to the system, to ac-

commodate special needs.

2.1. 1.3 Efficiency. If the IFS is to meet effectively all the demands placed on it,

operating efficiency is an important factor. To make maximum use of the available

storage, methods of representing data for storage and methods of utilizing the space

within data blocks should be carefully considered. Data of interest to more than one

user should be capable of being shared, with proper attention paid to protecting the data

and, where necessary, providing control over access to it. Indexing arrangements are

probably the crucial factor in determining the speed and flexibility of accessing data.

Data retrieval strategy and the methods of updating and maintaining the data base will also

play key roles in determining system efficiency.

2.1.1.4 Reliability. In a real-time, spaceborne environment, reliable system oper-

ation is of the utmost importance. The chief concerns of the IFS in this area are the

protection of data, by controlling who is allowed to access the data and change it, and

the provisions for recovery and retry in case of system errors of any sort. (Table 2-2

contains several examples of potential data threats and protection devices. )
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2.1.2 Operations

2.1.2.1 User Functions. The IFS user will ordinarily be thought of as a human with a

problem to solve, but task programs may also be considered users, inasmuch as a task

program may call on services provided by the IFS. For maximum flexibility, both kinds

of users should be able to call all IFS services, although the appropriate languages for

doing so need not be the same.

Since querying or obtaining information from the system is the primary user

function, the facilities provided are extremely important. There should be a variety of

ways of specifying conditions under which data is wanted. For the user who is not

intimately familiar with the data base, it would be helpful to have a dialog query capability,

in which the user would ask a series of increasingly specific questions, each based on the

results of the previous ones, until the desired item was found. This dialog could also be

the chief means of training novices in the use of the system.

Other user functions th'at may be called on by task programs as much as by

human users include editing or arranging information for some specific purpose, up-

dating the data base, and generating reports.

Finally, the human user requires facilities for entering programs into the

system and calling for the execution of these programs. These functions would belong

to the Job Management System, if it existed separately.

2.1.2.2 Interfaces. The IFS occupies a rather central position in the system since it

interfaces with human users, task programs, the EFS, and any Job Management System.

However, the IFS insulates these subsystems from one another as well as connects them,

so changes to one subsystem should have a minimal effect on others.

2.1.2.3 System Functions. The system functions are the built-in, intrinsic functions

of the IFS, and bear a large part of the responsibility for achieving the IFS's design ob-

jectives. First, there are the functions dealing directly with data, including translation

of data values for input, output and storage, data base updating, and data retrieval. When

data retrieval is done sequentially or in some other pattern, it should be possible to in-

crease its efficiency by performing a look-ahead operation in conjunction with the EFS.

Next, there are supervisory data functions, including directory updating and data in-

dexing {which should be done automatically whenever the data base is changed), and the

2-7
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maintenance of data usage statistics. These statistics may be used to reorganize the

data base in a more efficient manner, either automatically or manually. Finally, the

IFS should play some role in keeping track of each user's use of the system with the

EFS, by providing backup and failure recovery facilities, through job and data restart

points or other means.

2.1.3 Structures

2.1.3. i General Considerations. Various general structural considerations affect the

design of an IFS. The following structural features will be considered:

(1) The organization of the data base

(2) The expected size of the data base, and its implication

on the system design

(3) The length (fixed or variable) of the data block ex-
changed between IFS and EFS

(4) The logical structure and physical format of the data
block

(5) The ordering principle used to arrange data segments
within files

(6) The facilities which should be provided for data

linkage.

2.1.3.2 System Structures. System structures are tables maintained by the system to

describe and provide access to the data base. These structures include:

(1) Logical data directories, which describe the logical structure
of the data items and their logical position in the data base.

(2) Data file or item name dictionaries, which provide a cross-

reference between the symbolic item names used by the
external user and the structural or other codes used to

identify the items internally.

(3) Indexes, which tell where in the data base certain data values

may be found, thereby enabling the system to perform

searches without accessing the data itself, or accessing it
minimally. The type and amount of indexing are critical in
determining the system effectiveness since search time can

be minimized through adequate indexing, while excessively
detailed indexing requires much time and space for main-

taining the indexes.
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(4) Access rights tables, which enable the IFS to keep track
of which users are authorized to access each portion of the

data base, and for what purposes.

Other system structures, such as a list of active tasks and their data require-

ments, and a list of users and the extent to which they use system facilities, may also

be required if the IFS is performing job management functions.

2.1.3.3 Item Structure. Item structure refers to the logical structure of individual

data items. Items are divided into subitems, which may be further subdivided and ulti-

mately divided into fields or values. Certain substructures may be repeated an arbitrary

number of times; also certain substructures may be optional. Relations among items

may be expressed implicitly by the logical nesting of items within other items, or ex-

plicitly by means of directories or various kinds of data linkage. The degree of com-

plexity permitted in item structure is a matter of importance. Allowing arbitrary

complexity will entail a certain overhead in system development costs and running time,

but may be justified because the system will be much less subject to change arising from

a need for data structures more complex than those originally envisioned.

2.1.3.4 System Program Modules. The organization of system programs comprising

the IFS must also be considered. These programs should be as modular as possible in

order to facilitate implementation, debugging, and documentation, and in order to mini-

mize the effects of changes. The use of a standard method for program interface will

also contribute to these ends. Finally, program functions should be as general as possible

so that the programs may lend themselves to uses not originally foreseen and thereby

extend their useful life.

2.1.4 Language Elements

2. I.4.1 User Languages. Program specification languages are used to define task

programs. A special language may be provided for this purpose, or else the system

may be built to accept the output of any standard procedural language processor. Pro-

gram execution languages call for the execution of programs and supply them with

necessary parameters. The user functions of defining data structures and entering data

require appropriate languages. Language definitional facilitieswould be especially

helpful for the data entry function, particularly where large quantities of data are involved.

2-9
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A query language is necessary to enable the user to retrieve information from the data

base. The principal considerations here should be flexibility and the user's ability to

obtain information in spite of a limited familiarity with the data base. The user must

also be able to specify the form in which he wants the results presented. Hence, an output

formatting or report generation language is required.

2.1.4.2 Programmer Languages. Programmer languages are those used by the task

programmer to call on IFS services. The most important of these are data updating,

data retrieval, and report generation. In addition, a control language is needed so that

tasks can call for the execution of other tasks and so that control may be passed from

task to task and between tasks and the control system.

2.1.4.3 System Languages. System languages are those used by the IFS itself when it

operates upon data and interfaces with other subsystems. Data coding schemes compress

data in order to save space and also, possibly, to prevent unauthorized access. Also,

data must be formatted appropriately for input/output operations. The primary interface

of the IFS is with the EFS. Symbolic block names and data blocks themselves are ex-

changed in both directions across this interface. The IFS also interfaces with the Job

Management System (JMS); the IFS can use the JMS as an intermediary in dealing with

the user, and the JMS can call on the IFS for loading task programs.

2.2 EXTERNAL FILE SYSTEM FEATURES

A summary chart of External File System (EFS) features is given in Table 2-1.

Each item is discussed in the following paragraphs.

2.2.1 Design Objectives

2.2.1.1 Adaptability. The EFS is a basic software module which, while undergoing a

continual planned evolutionary development, must maintain an interface with its en-

vironment. This interface must be relatively insensitive to both internal and environ-

mental changes; that is, it must adapt easily to changes in the configuration and the equip-

ment types, both central processor and peripheral devices, in its hardware environment.

Similarly, it must exist in an evolving control software environment, consisting of a

time-sharing monitor, JMS, and IFS, and must adapt to changes in these components

while presenting a compatible interface with user programs. Finally, it must adapt to

changing user programs, a growing data base, and varied data usage patterns while

maintaining high performance levels for the user.
2-10
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2.2.1.2 Responsiveness. The EFS must be highly responsive to both random and

serial block access request. This implies that a fast (possibly hardware implemented)

mechanism must translate the symbolic block name to a hardware device address, and

that blocks which are normally processed serially should be assigned to a single storage

track, if possible. Where data needs can be predicted, there should be mechanisms for

using this information. Thus, when an access request for this data occurs, it can be

optimally executed. The number of external device accesses required to respond to a

random block request should be minimized. The amount of "housekeeping" due to

physical cell relocation should be minimized to take full advantage of look-ahead

information.

2.2.1.3 Efficiency. Along with response time, one of the most important performance

measures of the EFS will be the efficiency with which it utilizes space on storage devices,

This efficiency will be a function of both the amount of storage required for directory data

and the degree to which common data is shared by various users. Another important

aspect, from the user's point of view, is the ease with which the system can be learned

and used.

2.2.1.4 Reliability. Integrity of the data base is the responsibility of the IFS and the

EFS. While permitting common data to be shared, the EFS must control unauthorized

access to data by using methods such as lockwords and user classification. There must

also be protection against collisions of legitimate usage resulting from simultaneous in-

dependent attempts to write the same block. In the event of error due to either system

failure or user error, there should be the ability to recover an earlier state of the data

base and a method to reconstruct the state prior to error. Accountability for data usage

should be built into the system so that measures of use and service can be derived.

2.2.2 Operations

The operations which the EFS must perform to meet its goals fall into the

functional areas of data access, storage organization and optimization, data protection,

and directory maintenance.

2.2.2.1 Data Access. The block is the smallest unit of data the EFS handles. The

block will be defined as a fixed-length module of data -- usually equal in size to the quan-

tum of data allocated to storage by the time-sharing mechanism -- called the page. The

2-11



basic functionof the EFS is to service program requestsfor the retrieval andstorage of
blocks whichare namedsymbolically or are identifiable as sequentiallyaccessedmem-
bers of sometrain or segment. Thetrain andsegmentare contiguousmodulesof data.
The EFSwill alsoallocate core spacefor buffers andother temporary working storage
for programs.

2.2.2.2 Storage Organization and Optimization. In carrying out the data access func-

tions previously mentioned, the EFS will organize the system storage media for efficiency

in space utilization, data movement, and process execution. Inherent in the problem of

mass storage of a large data base and the technology of storage systems in the foresee-

able future is the problem of handling data at different levels of access. The character-

istics of storage media are such that fast-access storage has a higher cost per bit than

slow-access storage, and that the device with the higher total capacity is associated with

the slower access time. Although new storage techniques now in the research stage*

may become operational during the life of the data management system to be developed,

it is evident that the need for several access levels will continue, and that the foregoing

physical and economic relations will continue to hold. A major function of the EFS will,

therefore, be the movement of blocks and trains from a current level to a more appro-

priate level of storage. When information about data needs is known in advance, it can

be strategic to use whatever free processor time and storage space are available to move

this data to the highest (fastest access) level available. The process of anticipating data

needs is called "look-ahead." Look-ahead information can be obtained implicitly from

arguments in a user command or explicitly in the program as "open" and "close" state-

ments. Optimal management of primary (core) storage implies primary to secondary

block movement ("page swapping"). Some of the storage management strategies pro-

posed use statistics on usage to determine which pages should be swapped from core and

the appropriate level of storage for a given block or train. Other look-ahead strategies

involve block grouping by process, either through block movement or chaining. Since the

effectiveness of these strategies has yet to be verified, and it seems difficult (if not

impractical) to simulate them, there is a strong incentive to build a flexible storage

optimization module into the EFS so that several techniques can be tested in practice.

*New storage techniques, which promise higher capacity with reduced access time and
volume requirements, include laser optical memories employing photochromic media
and linear magnetic memories employing acoustic wave propagation of magnetic domain
walls.
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2.2.2.3 Data Protection. Since many active processes share the computer system and

many potential users share common program and data blocks, by implication the data

management system accepts the responsibility for data protection. There are many

events, deliberate and accidental, that pose potential threats to data integrity. A data

protection device (or combination of devices) must exist to maintain data integrity in the

face of these events. A discussion of these events and their pertinent protection devices

appears next (see summary in Table 2-2).

TABLE 2-2. DATA INTEGRITY PROTECTION

Threatening Event Protection Devices Controlling
Processes

Illegal Program Bounds Register/ Time-Sharing
Reference Process Map Monitor

Block Write Block Edition
Collision (Generation} Control EFS

Illegal Item Classification/Clearance Cheek IFS
Reference Conditional Access Rights Check IFS

Illegal Block/ Loekword/Password
Segment Reference Check EFS

Reading of Data
Being Updated Busy-Bit Lock on Item IFS

Erroneous Program/ Block Movement to Archive
User/Device Action File EFS

I
I

I
I

I
I

In a time-shared system, there may be two independent attempts to write a

data block. For example, in an inventory system there may be two independent at-

tempts to deplete the quantity of a resource held in insufficient quantity for both, say each

depleting three units of a four-unit resource. If both processes read the initial quantity

of four and then one after another write the net resource of one, there is an obvious error

called a write collision. A possible protection device is to maintain an "edition number"

for each block and to return the block with the edition number incremented by one if a

change is made. The EFS will refuse to accept a block whose edition does not correspond

to one higher than the current edition. This forces the process to reread the current

edition of the block and again attempt the update process.
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A process may attempt to read a symbolically named block to which it is not

permitted access. If the block has a lockword that must be supplied with every read,

then the EFS can detect an illegal read attempt.

Finally, an erroneous action on the part of the program, user, or storage de-

vice may have resulted in invalid data which is later detected. To allow recovery from

this type of error, the EFS can write each edition of a cell in a separate storage area.

By periodically retiring older editions to a low-level archival file, it should be possible

to reconstruct the item as it existed at some earlier time.

2.2.2.4 Directory Maintenance. The directory maintenance function of the EFS will

involve operations on several tables. Physical block movement for the purposes of level

changing should involve only one table, the Block Address Table. If the symbolic cell name

is other than a coded relative cell address in the user's virtual memory, then there must

be a cell name list for converting the reference to a relative cell address. If usage

statistics are maintained at the cell level, then a usage register must be tallied by the

EFS for each cell reference. Finally, a user table should be maintained for storage

space accountability, updated as space is acquired or released.

2.2.3 Structures

The EFS comprises a number of data structures and a program structure.

The functions and properties of these structures are an important aspect in characterizing

ane evaluating the system.

2.2.3.1 Track Structure. The track is a deviee-addressable string of physically con-

tiguous storage areas ordinarily allocated to a cell or train of cells. The track structure

will be a function of (1) the EFS allocation strategy, which attempts to optimize device

utilization and responsiveness, (2) the cell structure employed in the EFS, and (3) the

device type being employed and its address structure.

2.2.3.2 Cell Structure. In addition to the number of levels of cell structure employed

by the EFS, and the size of the cell at each level, the EFS is characterized by the

strategies of block grouping (e. g., by process, user, or segment) within the higher level

cells. When managed through the IFS, blocks will ordinarily be grouped by item.
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2.2.3.3 Directories. The two main directory structures within the EFS are the cell

map, which maps the cells of the data pool and the process's virtual store onto tracks,

told the Segment Dictionary, which maps symbolically named segments onto cells.

2.2.3.4 System Program Modules. The same features discussed with regard to sys-

tem program modules in the IFS (Paragraph 2.1.3.4) apply equally to the EFS.

2.2.4 Language Elements

The EFS must provide language elements to interface with the storage devices

and the user program. The device interface will be dependent upon device types used,

but there may be some opportunity for device-independent design. Such commands as

channel select, seek, read, and write must be available.

The program using the EFS services may be a job task, the IFS, or the time-

sharing monitor. The EFS must respond to program service calls for a cell referenced

randomly by symbolic name or sequentially with reference to some previously opened

cell. Commands such as open, close, read, and write should be available.

Messages returned to the calling program should be identified as normal or

specified according to type of error encountered, such as undefined name, illegal read

or write, or the existence of a temporary lock that may be open on another attempt. The

temporary lock may be due to a write collision or a busy bit.

2.3 JOB MANAGEMENT FEATURES

Job management features are summarized in Table 2-1.

2.3.1 Design Objectives

2.3.1.1 Adaptability. The structure of the Job Management System should be insensitive

to changes in its hardware environment. From the user's point of view, it should adapt

easily to changes in user language such as format of input, mode of interaction, and

command repertoire.

2.3.1.2 Responsiveness. The Job Management System must be designed to be easy for

the user to use; i. e., it must be convenient for the user to enter a job request. Once the
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job request has been entered into the system, the system should rapidly process the

request to determine its deadline, priority, and urgency. The system should take what-

ever action is necessary to schedule the job and execute it so that deadlines are met.

2.3.1.3 Efficiency. The Job Management System should also be designed for efficient

utilization of the equipment in the computing complex. Wherever possible, advantage

should be taken of all possibilities of parallelism in computation, both in multiprocessing

central computing units and parallel peripheral units. In order to accomplish this, jobs

should be definable in terms of small separately processable modules with explicit inter-

change of information. Optimal advantage should be taken of sharable jobs and programs,

especially by using re-enterable program modules.

2.3.1.4 Reliability. Access to restricted data should be effectively controlled by the

system. This includes not only protection of the system module itself, but also control

of access to private data and program modules. It should be possible to establish the

access rights and need-to-know of individuals, as well as the security levels and access

restrictions of data elements. Effective archiving and error recovery procedures should

be built into the system to enable recovery from accidental errors and equipment

malfunction.

2.3.2 Operations

2.3.2.1 User and System Functions. The system should be capable of accepting the

definition of user and system jobs and executing them when called upon. It should be

possible for an authorized individual to define the users of the system and their priority

and access rights. Once the user list has been established, it should be possible for any

authorized individual to "log in" with a simple action and execute any system or user job

within known constraints. The system should provide adequate accounting of each indi-

vidual's use of the equipment and the system. The Job Management System should

schedule the execution of the job for efficient use of the system and the user's time. The

system should determine the tasks to be executed, bind the program variables according

to values specified, and control the task-to-task sequencing in the job.

2.3.2.2 Interfaces. The Job Management System should be designed to interface

effectively with the elements of its environment. These consist of the user through a

user language, the program through task management and executive services, the time-

sharing monitor, and the file system.
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2.3.3. Structures

The basic on-going data structures which the Job Management System will use

are a user list containing names of the users and their access rights, and a job definition

list which contains the definitions of the tasks and parameters of each system or user

job. In addition to these structures, the Job Management System will also use dynamic

structures such as the job queue and binding lists.

2.3.4 User Languages

The user language should allow predefined jobs to be executed and new jobs

to be defined. The job execution request shouldpermit job parameters to be specified

in terms of constants or literals, names of data base items, and possibly names of

data base items with a qualification which defines conditionally a subset of that item

which is to be used as the argument of the job.
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SECTION III. EVALUATION OF FILE SYSTEMS

Eight file systems (see Figure 3-1) were reviewed and, as far as information

concerning them was available, an attempt was made to evaluate them according to the

criteria discussed in Section II. The descriptions of each of these systems appear in

Appendix A, but their major characteristics are evaluated in summary form in this

section.

The study of the existing and proposed file systems has tended to underscore

the fact that a system is usually developed to meet a given set of objectives within some

well-understood constraints and, therefore, must be evaluated with those objectives and

constraints clearly in mind. For example, none of the systems examined was purely an

Internal File System (IFS) or an External File System (E FS). As a matter of fact, a good

way to characterize and compare these systems is to chart the "coverage" they give to

the main data management functional areas discussed in Section I: job management,

internal data management, and external data management. Figure 3-1 shows this

coverage in broad terms. Each horizontal bar in the figure is meant to convey the

system's coverage in each of the three domains.
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Figure 3-1. Summary of Capability

The major characteristics and an evaluation of the eight systems reviewed are

summarized next.

3.1 TDMS

Time-Shared Data Management System (TDMS) is a closed system which en-

compasses a set of functions for file generation, maintenance,, query, and reporting.

The TDMS files do not interface with programs other than the TDMS service functions

mentioned. These functions are meant to encompass those services normally required

by management level use of a structured file. TDMS interprets command language

requests for these services, which are made via on-line display consoles.
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TDMS appears to be a system that a nonprogrammer can easily use to define,

update, and query a structured data file. A language is provided to evoke system-defined

actions which define new data elements, load an initial file, maintain it, respond to

queries, and produce reports. It appears, however, that there is no easy way for a

programmer to interface with TDMS and provide for nonstandard actions in these areas;

that is, there is no discussion of the programmer as a user of the system, and no

direct data access services offered to the programmer as a user. As a consequence

of this lack of interaction of TDMS with a programming system, it appears that batch-

oriented or nonstandard data processing functions will have to be performed with a

specially prepared version of the file.

The data base of TDMS is highly indexed; normally, there is a complete con-

cordance of all fields. This means that the file is indexed by essentially each field value

which occurs in the file, a strategy that minimizes search time in responding to queries.

The results of making retrieval considerations dominant in the design are that a large

amount of space is devoted to the index tables and a large amount of time is spent up-

dating those tables when records are added or modified. These results are a mani-

festation of the space/time tradeoffs which are normally available to the programmer.

If fast response to random queries is the most critical requirement for the query sys-

tem, then TDMS indeed optimizes the right element. However, in a multifile data base

there is usually a variation of response times which can be tolerated across the files.

Some files have faster response requirements than others; and even within a single file,

a predictable subset of properties will often enter into the conditional statement of

queries while other properties are rarely qualified. It appears that a system which

allows a tradeoff of these factors at the time a file is defined or loaded will be more

efficient in the overall utilization of space and time. If the selection of which fields and

field values are indexed can be made dynamically during the life of the system, then

this tradeoff is adaptive to changing usage patterns or to experience with the use of the

system.

The TDMS query language has one property which is extremely desirable in

data management systems. It allows the interrogator to make effective use of the infor-

mation he has concerning the structure of the data base which he is querying. The

ability to qualify the scope of the condition through use of the "item name HAS" clause

would be rendered more effective, however, if the item name were the name of an em-

bedded file or record rather than the name of a field at the level of the embedded file
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within which the condition is directed. The inability of TDMS to take this approach seems

to stem from a lack of recognition that file and record are two distinct entities and levels

in the structure. In TDMS the phrase "repeated group" appears to be used indiscrimi-

nately to refer to either.

3.2 GI..__SS

Generalized Information System (GIS) has a programming language and com-

piler in addition to a job request and query language. Only basic job management and

query functions are provided in GIS. Other services must be obtained through programs

written in the GIS language and compiled by the GIS compiler. The GIS language is

oriented to the convenient specification of file manipulation procedures. A broad range

of file structures and access strategies is specifiable in the GIS data definition language.

GIS programs, however, run as jobs in the host Operating System, OS/360, which pro-

vides the bulk of job management and external data management services. The GIS

internal data management services, unfortunately, are not available to the non-GIS lan-

guage programmer.

GIS will offer a programming language, a user-oriented query and command

language, and a set of basic data management functions such as data definition, update,

and query. GIS programs are compiled by the GIS translator and become jobs which run

within OS/360. Thus, although constrained to a particular operating system, GIS pro-

vides the user with a data management system of broad capability. There is a capability

for incorporating user-supplied non-GIS tasks in the GIS job. These may be written in

other procedural languages, such as FORTRAN or COBOL, but since they may make no

use of GIS services and since they are bound to parameter and data specifications at

compile time, they do not have the advantage of the data independence of GIS programs.

GIS has a query language with capability of expressing a logical condition of

complete generality, and indexes which can be used for efficient retrieval of data which

satisfies the conditional expression. In GIS, the indexes use physical, rather than

logical, addresses to refer to data, thereby implying more direct access to data but

additional maintenance due to physical data movement.

3-4

I

I
I
I

I
I

I
I
I

I

I
I

I
I
I

I

I
I



!

I

!

|

!

i

!

l

l

!

!

!

I

!

i

I

3.3 ICS

Information Control System (ICS) provides data management services to pro-

grammers using standard PL/1 and COBOL languages and compilers. This is accom-

plished by modifying the OS/360 to include executive level logical data services. (In

this respect ICS is similar in concept to DM-1. ) Although ICS is console driven, and

conditional retrieval services are available for program parameter binding, there is no

console user-oriented query language or on-going data base functions, such as storage,

retrieval, and multiaccess protection.

DL/1, the conventions of data base description and processing in ICS, appears

to be a system that will be reasonably easy to use since the standard programming lan-

guages of COBOL and PL/1 are continued under DL/1. The changes incorporated in the

programmer's normal attack on a programming job appear only in his specification of

the Program Control Block, his definition of the data base structure through the data

base definition utility provided with the system, and his altered execution of I/O state-

ments in his program. The terminal command language appears to be minimally struc-

tured to fit the specific requirements of the set of applications.

While many features of the general-purpose system have not been incorporated

in the documentation reviewed on ICS, it is felt that these features could be incorporated

as the system grows with use. The general-purpose Query Language, for example,

could be added when the data base directory system is enlarged to accommodate a

s_ffficient!y large corpus of data.

The ICS-DL/1 system appears to respond to the requirements of the environ-

ment for which it was structured. The straightforward handling of data calls, described

previously, does not change the job of the programmer to any major extent. The

terminal system, with its associated command language, is probably sufficient for the

environment for which it was designed.

3.4 DM-1

Data Manager-1 (DM-1) is a system with a broad range of job management and

internal data management functions. DM-1 relies on an independent external data manage-

ment system to allocate storage space and access symbolically addressed blocks of data.
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The query function is embedded in DM-I's command language and command language

interpreter. DM-I's internal data management services are available through exec-

utive service calls to programs compiled or assembled in the standard manner. Thus,

there is no procedural level language or procedural language processor in DM-1. Pro-

grams using DM-1 services may be described and cataloged in the DM-1 directory.

These programs, which may be general-purpose in nature, along with DM-1 support

jobs (which are general-purpose) can then be combined into a set of composite jobs

which are accessible to the (programmer and nonprogrammer) user through the command

language. DM-1 support jobs, provided to define data structures, input data, maintain

data, and print (display) data, are thought of as the nucleus of an expandable set of

general-purpose data management functions. The conditional search function is a basic

DM-1 service which is accessible to the command language interpreter and to the user.

The DM-1 command language allows any command operand (job argument) to be qualified

by a general logical condition so that jobs have a broad range of usefulness and a query

is simply a display job with a qualified argument.

The separate management of data and programs with a mechanism for linking

data to programs and jobs used in DM-1 will extend the life of the programs. The

management of data, however, implies the ability for flexible description and pro-

cessing of that data. The evolution of data from one format to another, the addition of

fields to records, and the transformation of format are examples of characteristics of

the environment for which DM-1 was developed.

The directory system, with its associated optional extensions to incorporate

data field indexing and data item linkage, provides a flexible associative mechanism.

The concept of generalized programs is another design characteristic that

should prove extremely useful in the development of software and application systems

during the third and succeeding computer generations. One of the principal concerns

of every programming or systems manager is the cost involved in the clerical aspects

of programming. The same logical functions are repeated by application programmers

utilizing varying algorithms. Generalization in DM-1 can provide both a means for re-

duction of the application system development effort and a mechanism for programmer

standardization.
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(Note: Except for TDMS, which operates only within the SDC time-sharing executive,
the preceding systems may or may not be operated in a time-shared environ-
ment. The systems discussed next all provide external data management
services within a time-sharing framework. )

3.5 TSS/360

Time-Sharing System/360 (TSS/360) is a multipurpose time-sharing system

which is intended to provide a computing utility type of service to a large number of

users. It attempts to disassociate its users from considerations of external data

management by allowing programs to be compiled as if all data were in primary

memory -- a "virtual store" with an address space of 224 eight-bit bytes. Since it

will execute user programs stored as "data sets," it does not interfere with the opera-

tion of other user jobs. It provides a measure of logical item management by permitting

data sets to be symbolically named, variable in length, and hierarchically structured.

In the tree structure of data sets within virtual storage, the ability to reference

any branch symbolically is advantageous. The (partial) ordering within the structure

being implied by the symbol (name) of the branch is useful, both from the point of view

of the user working without the help of an Internal File System and from the standpoint

of efficient operation, especially in changing the directories for additions and deletions.

Within a data set which is an indexed sequential file, logical records may be

retrieved in the order stored, or in the order dictated by key data, as specified by the

user.

The limitation to a tree structure is not as severe as it may seem on the sur-

face, for other structures may be set up within that framework (although efficiency of

operation is bound to suffer somewhat).

For the portion of the data structure which should be physically tree-structured,

the access methods could be used to advantage by higher level file system programs.

For other structures one would have to build his own External File System, which in

turn uses the IOREQ facilities of TSS/360.

3.6 BTSS

The Berkeley Time-Sharing System (BTSS) is a general-purpose time-sharing

system which was originally designed for experimental use by a rather small community
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of users. However, several versions of BTSS are being used in what amounts to a

"computing utility" mode. In a sense, BTSS is more general-purpose than the other

systems discussed because its users may interface with a system which looks very much

like a medium-sized, general-purpose computer with a normal complement of peripheral

equipment, with few restrictions on the type of programs it runs or software it develops

and uses. The restrictions are that the programs use special input/output instructions

(which look very much like the normal hardware input/output instructions}. In this mode

the system does little more than isolate this user from others and cause his programs

to run slower because he is actually sharing the machine with other users, unknown to

him. However, BTSS does provide other levels of software services and subsystems

which are interactive with the user through an on-line console. Input/output services

are provided for symbolically named items of arbitrary length. These items can be

considered as either sequential or addressable (certain devices are inherently sequential

and cannot be considered addressable), and the service is available at either the charac-

ter, word, or block level.

The designers of BTSS started out with what they said was an experiment to

test some ideas in time-sharing and man/machine interaction. What they accomplished

must certainly be regarded as a highly successful operational system. The following can

be listed as its accomplishments:

(i)

(2)

(3)

It has introduced some important innovations in second-
generation hardware for time-sharing; these compare
favorably with what is being introduced in third-generation
systems.

It has an easily used interface with the user and has
effectively supported the development of user-oriented
subsystems such as an interactive editor, compiler,
and computation system.

It has been widely adopted by commercial time-sharing
users.

The three-level structure of BTSS -- monitor, executive, and subsystems --

has contributed to the ease of developing user-mode software (including the executive

and subsystems). The concept of an interface at the monitor/hardware level provides

a general-purpose computer to the machine-language programmer and undoubtedly

enhances the effectiveness of the system programmers who developed the higher levels
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of the system. This is an attractive principle which has a bootstrapping effect and per-

haps should be more generally adopted in developing new time-shared systems.

The user interface (and system flexibility) provided by the combination of

full-duplex operation and name recognition has much to recommend it. However, the

structure of the system directories, particularly the use of randomized addressing in

these tables, does not seem ideally suited to name recognition, which depends on the

examination of partial argument strings and determination of whether they are unique.

A table whose arguments were indexed (or chained) alphabetically would appear to be

a better match to this function.

The structure of the sequential and random input/output operation is well

conceived but there does not appear to be a need for, or an effective way to utilize,

the very rudimentary variable record capability which is described. (None of the input/

output instructions or file commands appear directed towards the access or processing

of a variable length record. )

3.7 MULTICS

MULTICS provides a "computing-utility" type system to a large number of

users. It can be compared directly to TSS/360 in its intent except that it provides a

more flexible and adaptable executive (each user can "tailor" his executive interface

somewhat} and allows more general data set and directory hierarchies in its external

data management system.

The MULTICS file system design, however, is inclusive, and has overlooked

few features of significance in the external data management area. Since it permits a

very general hierarchy of file naming and structural membership, there is little need,

if any, of file duplication for control purposes, Files and programs can be shared

among specified users, with proper safeguards, and adequate provision is made for

backup and recovery.

The only adverse criticism of the file system is that it is complicated by

logical (internal} file management services which may have been easier to handle

within the framework of an internal file management system.
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3.8 INTIPS

Integrated Information Processing System (INTIPS), more specifically, the

INTIPS external data management system, provides for management and retrieval of

external data items which are at two levels, a block of 512 12-bit words or a defined

structure made up of blocks. The user need not be concerned about which device will

be allocated or even on what device his data is stored. The data management system

will attempt to optimize storage utilization by moving data from one "level" of storage

to another, depending on usage patterns.

The ability to manage data structured as a lattice provides the system with

a significant degree of generality over systems which confine data structures to a tree.

However, the more flexibility in the structure, the more critical become the design of

the directories or indexes and the procedures for lookup. One of the challenges in

designing file systems with nonsimple data structures is the discovery of ways to cut

down the time needed for successive references to the indexes in locating an item. It

is apparent that the INTIPS file system designer is at least conscious of this problem,

as exemplified by the use of hash encoding.

A surprising omission is the apparent lack of a backup system. While this

may be elaborate (automatically triggered backup or restoration of selected files) or

simple (specially scheduled manually initiated utility program), some capability to

protect against loss of a data base should be considered a requirement. Without doubt,

at least a minimal capability is intended, as the design goals include immunity from

catastrophies due to losing devices. This could be a significant cost area in a system

which aspires to a data base of 109 blocks, as the number of tape reels needed to hold

the backup data is in the neighborhood of half a million.
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SECTION IV. THE COHERENT SYSTEM

It is clear, from examining the characteristics of the data management

systems chosen for review, that there is a broad range of approaches to this problem,

as well as a broad range of functional requirements which can be satisfied. The follow-

ing can be identified as elements of an interactive system servicing an on-going data

base for a community of users:

(1)

(2)

(3)

An input string handler and "corrector" which can
recognize commands and names, and which responds
to control symbols in the input stream which "erase"
characters, words, and lines.

A basic time-slicing mechanism and monitor, which
shares the system among several independent on-line
users, without their knowledge, and with noninteraetive

scheduled and real-time jobs.

A job management system (JMS), which interprets
commands, assigns appropriate priority and urgency

to tasks, schedules the hardware and software subsys-
tems for effective utilization, and initiates the appro-

priate process to respond to commands.
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(4)

(5)

(6)

A file system, which provides access to either logical
or physical data entities and also provides adequate

safeguards to the data resources of the system.

A set of language processing subsystems for inter-

active program development {assembly, compiling,
editing, and debugging) and computation.

A set of system services, callable by the user or pro-
grams, which allows the user to define new jobs and
data structures, to enter data into the data base, to

query the data base, and to use subsets of the data
base (conditioned on content) as the values of job
parameters.

4.1 THE COHERENT SYSTEM CONCEPT

4.1.1 Coherence of Programs

One of the most powerful tools, which can be used to create a coherent facility

that can adapt to the needs of its users, is the capability to use and combine programs

freely in different structures and contexts for performing specific functions. When both

generalized and specific mission-oriented programs can be combined without restrictions

(other than those determined by the functional logic) above the program level (that is, by

the nonprogrammer user), then one can say the system possesses "program coherence."

The system described, in addition to possessing the program coherence

attribute through the dynamic use of system commands, has the ability to define, name,

and store program structures so that they may be easily and repeatedly invoked by the

user. The structure, called a job, may contain programs or other jobs as its modules.

The stored job definition may contain preassigned values for any of its component job or

program parameters. Output parameters of any task may be bound to input parameters

of any other task in the job.

Nonrepetitive jobs of a simpler structure can be invoked from an on-line

terminal through a command or a string of commands. A command is a request to

invoke a job whose function is to produce or display an instance of a single data item,

such as a field, array, or statement. Because of this restriction, commands take the

form of a single statement composed of an operator and string of operands. Operands

may be nested, or qualified (or both); that is, the item produced by any command may

be an operand of another command, or a part of the item which satisfies a condition

may be an operand.
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4.1.2 Coherence of Control

The principle of coherence of control implies that any program may function

as a control organ which initiates and sequences the execution of other jobs. The

mechanism for this is known as the job extension. A job extension is initiated by a

message from a task to the Task Manager, the JMS module responsible for task-to-

task linkage. The job extension specifies which job is to be executed and whether

control is to be returned to the originating task at the termination of the new job,

One important use for a job extension is to permit a task to determine whether

the prerequisites for running a job have been satisfied. The prerequisite condition

evaluator may be a one-task job which is triggered solely by an interval timer overflow

or some other specified interrupt, or by a normal job request or other message. Typi-

cally the prerequisite condition evaluator may check absolute time, data base state, or

message queue to determine whether a job should be run or a status message generated.

Prerequisite condition, and timer triggering are important aspects of real-time and

control systems.

4.1.3 Responsibility for Program and Control Coherence

The responsibility for achieving a coherent system, as defined previously,

is shared among the system elements, the program translators (compilers and assem-

blers), and the programmer. The Job Management System and the File Systems are

necessary, but not sufficient components for system coherence. They must be supported

by argument and result transmission standards used by the programmer or program

translators. Basically, the Internal File System (IFS) should be used for all argument

and result transmission. At task initiation time, temporary items containing the value

of program parameters are created by the Job Manager. The compiler (or programmer)

should read these items using the item service of the IFS. The names of the formal

items are considered local to the program and are deleted at the time of task termination.

4.2 JOB MANAGEMENT SYSTEM

4.2.1 Responsibility of the JMS

The JMS supplies the mechanism for triggering and running jobs. A job is a

unit of work which has been defined to the system by the user, triggered by an external

request, and scheduled by the Job Management System. The mission-specific functions
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which the data processing facility is to serve demand the capability to execute a combi-

nation of real-time process control and user interactive functions. In addition to this

the system must support program development and system checkout activities.

In order to accomplish this effectively, the JMS should be capable of inter-

preting a user-oriented command language with a repertoire of commands which are

easily expandable by the user in terms of existing jobs and programs and newly created

programs. When a job can be completely predefined (with no parameters), it should

be possible to trigger its execution with a special interrupt line, a timer overflow, or

a short job name keyed at an input keyboard. It should be possible to assign a deadline

to a job so that jobs can be effectively scheduled. When the system is saturated, dead-

line conflicts should be resolved on the basis of user priority or job importance.

In addition to command interpretation and scheduling, the JMS will be respon-

sible for job and program parameter binding and task-to-task sequencing of multitask

jobs.

4.2.2 Jobs and Commands

A program is a module which is compiled as an entity and which is designed

to satisfy some function. It is treated as a train of words and pages by the External

File System (EFS) and uses the address space of a cell in the virtual store. Since a

program is usable as a task, the program data must be submitted through the Program

Entry service. Address space in the virtual store is assigned to contain the program,

and the program description is entered into the Program Description List used by the

Job Management System (JMS) and the File System. The program description, which

establishes the information needed by the system to provide parameter binding and file

services, consists of program name, parameter definitions, an external symbol dic-

tionary, and formal file definitions. A service window is a formal program item or cell

which is the source (or target) of explicit data service requests. Formal files are the

formal data base items or trains which the programmer or the compiler assumes form

the target (or source) of program data. The formal files are bound to system files (data

base items or trains in the virtual store) by the task specification in the Binding List.

A task is a program whose parameters have been bound in the context of some job or

command. A binding list is prepared by the Job Management System and is used by the

File System to establish the context (i. e., arguments) of the program.
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A job is a structure, defined in terms of one or more subjobs, for accom-

plishing some system support or mission-specific function. It is defined to the system

in a job definition request which places the job definition in the Job Definition List used

by the Job Management System. The job definition consists of the job name, parameter

list, and structure of the job in terms of tasks and jobs. The job structure is defined

by binding subjob and program parameters, and indicating flow of control by using

dummy variables and flow control statements when required.

A job structure with certain properties makes it possible for the system to

offer additional services which improve the interface with interactive users. These

jobs, which are called commands, have the restriction that they create or display

exactly one data item as a result; and use data base items, substructures of data base

items, or literals as arguments. As a result of this restriction, the system can allow

commands to be nested and arguments qualified by conditional statements. Thus, the

data item produced by a command can be used as an argument of a command "wrapped

around it," such as "#Print (# Update (Mission File, New Experiments))." Also, a

conditional search capability can be used by the command language interpreter to extract

a portion of a data item which satisfies a logical condition and transmit that portion to

the task as its argument. Thus, for example, a query function can be accomplished by

using a generalized print command and qualifying the data item which is to be printed.

For example, the command "Print (Propulsion System Status Where Spacecraft=Apollo

and Launch Date > June 1970)" will cause the Print routine to receive from the Propulsion

System file only those status records which pertain to the specified spacecraft and launch

date.

4.2.3 Structure of the Job Management System

The data flow between the JMS and the task and File System (FS) is shown in

Figure 4-1. The task uses the File System to obtain values of all formal items, including

parameters and files. The equations which bind formal names to data pool items are

given in the Binding List for the task. The FS uses the Binding List to respond to

service calls.

Information flow within the JMS is shown in Figure 4-2. There are three

broad functions performed in the JMS: job triggering, scheduling, and task binding.
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4.2.3.1 Job Triggering Functions. Jobs can be triggered in two different ways:

either by the receipt of a job request, command, or other message, or by a timer

overflow interrupt. The ability to trigger predefined jobs by means of interval timer

overflow is important for real-time control applications. The Interval Overflow

Processor uses a job trigger list to associate each timer overflow line with a job to

be run. If the job depends on prerequisites other than time (such as the existence of

a message or state of a data base item), a prerequisite condition evaluator job is

triggered. If the prerequisite condition is satisfied, then a job extension to the desired

job is issued.

Job requests, and messages in character stream form are processed by the

Job Request Processor. By using a syntax table driven input scanner and parser, the

Job Request Processor can accommodate a number of message, request, and command

formats engineered to interface with the user.

4.2.3.2 Scheduling Functions. The scheduling strategy can play a large part in deter-

mining how well the system performs real-time processing. Since the job is the unit

of work which is meaningful to the user, it is logical for the schedulable module to be a

job. Since a job is a predefined entity in the system, running time, deadline, and

priority estimates sometimes can be made before the job is triggered, and stored with

the job definition.

The concepts of deadline, priority, and urgency require definition. Deadline

will be defined as the latest time at which the job results should be available once the

job is triggered. Priority is defined as the importance or relative weight of a job. Job

priority is to be used to determine which job to favor when the system is saturated and

deadlines must be violated. It may either be dependent on the inherent importance of

the job or be assigned dynamically by the requestor (and depend on his "rank"). Urgency

is the factor which determines the order in which jobs are initiated (the most urgent job

is initiated next). The urgency of a job increases as time approaches deadline minus

estimated running time. The Job Scheduler will read the job queue and the job definition

and create a task queue ordered by job urgency.

4.2.3.3 Binding Functions. One of the precepts of tile Coherent System is that the

overall effectiveness of the system (and the programmers) is enhanced when many of
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the programs are highly parameterized and generalized, adaptable to many specific jobs

in which they may be used, and largely independent of the on-going data structures to

which they may be bound.

Binding takes place at several levels in the system. Programs must be defined

to the system before jobs may be defined in terms of those programs. Jobs must be

defined before requests may be made to run those jobs. These definitions and binding

functions serve several purposes:

(i)

(2)

(3)

(4)

(5)

The same program can be used in several contexts

without changing the module.

A program can be independent of the physical struc-

ture of the data base (locations of trains and files).

A program can be independent of the format of an
item maintained in the data base for IFS services.

Tasks and supporting ftmctions can be intelligently
scheduled (e.g., file conflicts are known ahead of

time, enabling task dispatching to be done with the
status of all resources known; also, files may be

opened before a task is actually begun, resulting in
overall better responsiveness of the system).

The system is made easy to use.

While it is desirable to have the flexibilities of constructing jobs from pro-

grams, and use programs (or jobs) in different data or procedural contexts, the design

must take into account the fact that most jobs to be run in the system will not change in

construction from run to run. The trap to avoid is a design which forces the user to

follow a complicated procedure for those jobs which he rightly feels should be easy to

run. This consideration alone demands that the job definition be a separate function

from the job request.

4.3 DATA AND DATA SERVICES

4.3.1 The Data Resource

One of the basic premises upon which the Coherent System model is based is

that the data of the center (or the mission) can and should be viewed as an on-going

resource whose structure and useful life may transcend any one user, program, job,
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experiment, or project. (It is even reasonable to assume that just as a computer system

and its support software may serve more than one space mission or space vehicle, a

considerable amount of data will have a useful life which transcends the mission, e.g.,

data used for system checkout and test, benchmark problems, experiment control, and

celestial navigation.) There is a strong incentive, therefore, to develop techniques

which permit (and encourage) the design of data structures, and the maintenance of data

aggregates which are decoupled, to a large extent, from the programs which may use

the data. The system and techniques described accomplish these goals. Data struc-

tures may be defined, data aggregates built, maintained, searched, restructured, and

displayed using system support jobs (commands). The same data, through logical data

services at the programmer level, is also available to mission-specific programs for

mission-oriented use.

As a consequence of providing this service, the File System must accept the

responsibility for maintaining the integrity of data. It must provide for automatic

recovery of data lost as a result of equipment, software, or user error. It is anticipated

that there will be groups of users who are permitted access to certain data and denied

access to others, and that given individuals may belong to more than one group.

At any one moment there will be a body of ephemeral data which will coexist

with the on-going data base. This data will represent the working data of tasks, the data

being communicated from task to task in multitask jobs, and the data being communicated

between the user and the job. This data will be managed by the system as a service to

the task, job, or user. Data pool items will be created by the Job Management System

under the categories, Task Data and Job Data. Task Data is data created by the task

for its own working use (scratch data), and Job Data is either data transcribed by the

JMS from the job description (or job request) for use by the task, or that generated by

the task for use by another task or the user. Task Data is deleted at the termination of

the task, along with Job Data no longer required by the job or user. Job results are

maintained until deleted by the user.

4.3.2 Levels and Modes of Data Service

Data services are provided in two modes on two levels. The level of service

depends upon whether the commodity being serviced is an "object-oriented" entity, the

item, or a "space-oriented" entity, the cel__.ll. (As mentioned previously, all item
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services are handled by the Internal File System (IFS), while cell services are handled

by the External File System (EFS).) The external user normally deals with items,

while system and user programs may require item or cell services, or both. Thus, a

user program may use item services where the IFS will, in turn, use cell services.

An analogy to this is found in programming, where the coder may deal in space-oriented

entities and code at the machine instruction level, or he may deal in object-oriented

entities with a higher, problem-oriented language. Yet, the compiler will, in turn,

"code" at the machine language level.

An overall view of the levels of services performed by the File System is

shown in Figure 4-3.

Character stream data in External Data Language is mapped to a train in

Internal Data Language by the IFS mapping function {Data Entry), using the Item List,

an IFS table which describes the structure of the data. The EFS mapping function, in

turn, allocates device space and stores the train on a track. Data is transmitted to and

from items and cells defined by the programmer.

The Coherent System will provide File System services in two modes, from

the programmer's point of view:

(1)

(2)

Explicit services, the traditional mode, where the
programmer codes input and output statements along
with processing statements.

Implicit services, a mode made possible by the Coherent
System approach, where the programmer codes only
processing statements.

In the Coherent System, explicit services are the exception. The emphasis

is heavily on implicit item services and implicit cell services. Typically, implicit item

services are provided to programs coded in problem-oriented languages, where refer-

ences are to item names rather than to locations or cells containing data. Implicit cell

services are provided to assembly language programs, where references are to addresses

in the program's virtual store. When either implicit item or cell services are provided,

actual service requests are absent; the program is purely a processor, not a data trans-

porter as well.
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SECTION V. THE EXTERNAL FILE SYSTEM

To set the stage for development of the EFS functional specifications for the

Coherent System requires development of a set of premises which are in keeping with

the design objectives. It is assumed to be desirable to strive for the full potential of

the data management concepts developed in this study. Achieving this potential requires

cognizance of the structure and tools of the whole system, and imposes a requirement

that these be commensurate in capability to the File System in forming a unified whole.

While a detailed treatment of the total system design is outside the scope of this study,

it is necessary and appropriate to postulate other supporting software concepts and

equipment features which are either within the current technology, or achievable in a

practical sense within that technology.

(1)

(2)

It is assumed that more than one task may be active

at any one time. This situation may entail multi-
programming with one processor, or may be due to

the use of more than one central processor jointly
addressing a common memory in the execution of

program instructions.

Many of the programs may be simultaneously used
by several tasks; therefore, the ability to construct
and operate pure, or reentrant programs is a design

objective.
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(3) The burden of designing a program to manage a limited
amount of primary memory should be lifted. The pro-
grammer should be able to design with the assumption
that a virtual store is available at his command. The
reconciliation of virtual addresses to real addresses,

with the attendant "swapping" in and out of real memory
during execution, will be the job of the monitor and File
System.

(4) Intelligent management of the resources of the system
demands a fluidity of structure, especially an indepen-
dence of a program from physical storage assignments
both with respect to itself and with respect to its data.
Therefore, the system design should allow the construc-
tion and operation of programs which are insensitive to
the physical location of its data and instructions, to a
degree which is useful for total resource management.
This imposes goals on the File System, the monitor,
and the compilers or language translators.

(5) The compilers and the monitor should be designed to
meet the system characteristics assumed in preceding
items, and to achieve the File System's objectives,
some of which aim for a level of programming and
processing flexibility not heretofore attempted.

5.1 THE CELL HIERARCHY

The External File System deals only in transportation of strings of data. It

is insensitive to the nature of the data, its logical structure, format, meaning or lack

of meaning to the user, etc. It is interested in the size of the string, its source, and

its destination either in storage or at a terminal device. A quantum of data addressable

in some address space is called a cell. The EFS will transport data in "chunks," called

copy cells, of various sizes dependent on the form of service and the terminals. It will

be convenient to specify several levels of cells before developing the notions of trans-

porting collections of these cells.

5.1.1 The Byte

The byte is the unit of size in which higher level cell sizes are expressed. It

is defined as the smallest number of contiguous bits which may be addressed in primary

memory by an appropriate machine instruction. Letting U denote this unit of size, the

byte, then U represents some n bits according to the equipment chosen for the system.
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Other cells will be specified by expressing their size as 2n bytes or 2nu.

For example, one obvious copy cell should be of size 1U, the same as the byte; this

cell would be used in connection with terminal keyboard devices. Another natural

copy cell type might be the same size as the page. Perhaps these will suffice, but it

could prove convenient to define an intermediate size which is a "natural" for containing

display images.

5.1.2 The Page

At least one cell is defined as the unit of transfer for swapping purposes in

and out of primary memory. There is at least one natural modulus in the CPU instruc-

tion set for the purpose of addressing the virtual store of a process. A real address in

the CPU is formed by combining the location of the "page" (the "head" of the virtual

address) with the relative address, i.e., the relative byte within the page. The latter

is the "tail" of the virtual address, and most likely is specified within the instruction,

as modified by indexing. It is possible that there is more than one natural cell of this

type, but one will be sufficient to allow the development of the virtual-store management

functions of the EFS.

5.1.3 The Train Cell

Before defining the train cell, it is important to recall the definition of a

train: A string of one or more cell spaces (or simply "cells") identified by a symbol.

The cells are ordered 1, 2..... C. For trains maintained in the virtual store, the

cells are pages. The train cell (for a virtual store train) is the smallest power of two

(number of pages) which will accommodate the storage of the train; that is, there exists

an integer M such that 2M-1 < C <_2M. For a train of C pages, the train cell consists

of 2M ordered pages. The origin of the train is the same as the origin of the train cell

containing it. The origin is located within the virtual store by having a prefix or head

address assigned to it. The train cell is allocated to a track on physical store by means

of a map in the EFS. Access modules from the track copied to core by the EFS consist

of an integral number of pages. These relationships are depicted in Figure 5-i.

5.1.4 Copy Cells

The copy cel___llis the unit of data space to be used in holding images which are

transferred between primary storage and terminal devices. Several levels of copy cells
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may be appropriate within the system. The types chosen are influenced by terminal

equipment characteristics, the choice of cell size for the page (discussed previously},

and the rule that its size is 2ku.

5.2 TRAIN SERVICES

With the foregoing definitions, it can now be said that the EFS is concerned

with the transportation and storage of the cells of trains. These services fall into two

classes of service, implicit and explicit, rendered for different reasons and by some-

what different methods. Before investigating these, it may be noted that one require-

ment of the EFS, in order to accomplish any physical data movement, is that it must be

able to construct and issue the hardware commands or instructions which cause the

transfer of data to take place, and monitor their satisfactory execution. The design of

this portion of the EFS would be heavily dependent upon the characteristics of the equip-

ment. Also, because of the intimate interface with interrupt handling routines and the

Process Manager, this module would be designed in conjunction with the monitor.

Therefore, a Data Traffic Manager can be thought of as an EFS module which provides

device services to the system processes, particularly to other EFS modules, although

the specification for this module will not be developed further at this stage.

One class of services is concerned with intrasystem train service, that is,

the movement of cells between primary memory and other storage media maintained by

the EFS. This class of service is called "virtual store (train} management." The other

class of EFS train service is concerned with the movement of cells between primary

memory and terminal devices. This is called "terminal train management."

5.2.1 Virtual Store Trains and Implicit Services

The concept of a virtual store is a powerful one. Its realization in the form

of a working system demands careful and integrated design of all system software

(compilers, file system, the supervisor or monitor, etc. } and equipment features which

make it feasible. It is a relatively recent development; its realization in today's sys-

tems is only moderately successful. Yet, here it is intended to advance to a new plateau

of user power which stems from the combination of advanced data management concepts

with those of the virtual store.
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Figure 5-1. External File System Train and Track
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5.2.1.1 Coherent System Considerations. From the (assembler language) program-

mer's point of view, the virtual store is a symbolically referenced medium available

to his processing statements. Other trains (besides his program) in the system, con-

taining data or other programs, are immediately available for processing or linking.

This powerful concept, especially in conjunction with other advanced notions such as

the "purity" of the program (its ability to be executed as part of more than one process),

demands an intelligent supervisor (an example of which is the MULTICS supervisor).

Beyond this, the Coherent System concept suggests that programs do not fix

the virtual store trains, but rather reference a formal train. In this way the same

program may be used in several contexts according to the actual virtual store trains

which are bound to the formal trains, no___twithin the program but within the jo_.bb

definition.

Further, because of our distinction between item services (IFS) and cell

services (EFS), there should be no need ever for a program to explicitly read or write

any portion of his formal train if it is bound to system trains which are part of the

system's virtual store. The programmer merely regards it as part of his immediately

accessible storage, and goes about coding his processing statements, unaware of the

input/output aspect of computer programming.

5.2.1.2 The System's Virtual Store. The virtues of a symbolically referenced virtual

store from a programmer's point of view were previously stated. The virtual store

management functions also benefit from the notion of a system virtual store referenced

by virtual addresses.

2S-l.

cell can be thought of as:

If the virtual store accommodates 2s pages, virtual addresses run from 0 to

For a train cell consisting of 2M pages, the full address of any bit in the train

Train Address
I Page Address I Byte Address I

M bits --_[v N bits --_

Addresses byte
within a page.

S bits

\
v

Uniquely addresses each page

in the virtual store.

_'_d n bits _

I Byte
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A page brought into primary memory is located indirectly through registers used in the

instructions referencing the formal train. These "base" registers effectively provide

the head of the actual primary memory address of the page. The tail is, of course,

the N-bit field shown above.

A virtual store map equates the symbolic train name to the virtual address

of its train cell; TNLIST (TN) =VA. * Another table equates the VA to the track location;

TRACKLOCN(VA) =RA (see Figure 5-1). Thus, once the train cell VA is assigned for

a virtual store train, it does not vary with the physical location of the train cell, which

may be altered by the multilevel storage management functions.

A diagram showing EFS tables and the system modules which use them is

given in Figure 5-2. The Train Name List is entered only for initialization of the task,

by the Task Manager. Subsequent requests for cell services by the program are

interpreted via the Binding List and the Track Location Table. Important system data

which is repeatedly referenced will be fixed in the virtual store or the real store (or

both) and will be accessible without going through the binding process or the Train

Name List.

5.2.1.3 The Virtual Store Manager. The Virtual Store Manager is that part of the

EFS which resolves references to virtual address spaces. When reference is made

using a virtual address, the Virtual Store Manager (VSM) must ensure two things:

(1)

(2)

That the data involved is made physically available
to the referrer.

That a mapping is established between the virtual
address and the real address.

There are two kinds of virtual addressing in the Coherent System's design

concept. One is the reference made by a task to a part of its virtual address space,

i. e., to a byte within a page of a train. Functions (1) and (2) in this case mean that

the actual page must reside in primary memory, and that the mapping must be estab-

lished in such a way that the reference may be carried out by the machine hardware in

executing the instruction. This is discussed in more detail in Paragraph 5.2.1.4.

* The notation used in this report is in the form: f(x) =y, where f is the operator or

table name, x is the input or "basis" argument, and y is the result.
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The second kind of virtual addressing supported by the VSM is used in

referring to pages of addressable trains known to the EFS. In this case, a page p of

train t is to be copied from one real location to another (e. g., secondary to primary

memory). In order to do this, the head of the system's virtual address, t, is used to

locate the real address of the train in the backing store, and page p is read from the

backing store to a page in primary memory, using services of the Data Traffic Manager.

"Virtual Store Manager" denotes the set of functions in the Coherent System

which support these two virtual addressing arrangements.

5.2.1.4 Program Execution with Virtual Addressing. Several computers support the

execution of programs which use virtual addresses. The ultimate calculation, on a

given instruction, of the real primary storage address from the virtual address requires

special hardware features which operate through tables set up by system software. In

the Coherent System, the design of the hardware operation must be such that it accom-

modates easily the concept of virtual address references to other trains besides that

of the program, where the actual train to be referenced is not known at the time the

program is assembled into machine instructions. The binding of the actual train to the

formal train used by the program must actually be reflected in the process the hardware

follows in carrying out the reference, keeping in mind such requirements as:

(1)

(2)

The same page of an actual train may be referenced
by more than one running task {assembled using
different forma______ltrain names).

The same program code may be operated as two or
more tasks simultaneously (where one formal train
name may thus be bound to different actual trains in
the different tasks); that is, the same instruction
may lead to different real addresses.

A method of translation of virtual address to real address, using tables

constructed by the Task Manager after train binding, will now be described. This method

is similar to that used in TSS/360 (see Appendix A).

Suppose the computer instruction's address specification consists of a byte

address of N bits, an index register specification, and a base register specification.

The content of the index register is an address consisting of M+ N bits, where 2M is the

number of pages addressable in a train cell. A notational convention is: If m is the value
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in the M-bit field, and n is the value in the N-bit field, the value in the M+ N bit field

is expressed as m_-_n (this concatenation is easier than writing m x 2N+n).

The FTN (Formal Train Name) is assigned a numeric value f by the assembler

or compiler, and this is carried in the base register as f x 2 M + N Virtual address

computation (ignoring indirect addressing) consists of summing the byte address, index

register contents, and base register contents, as follows:

Byte Address

+ Index Register

+ Base Register

bl

P2 _ b2

f_P3_b3

= Virtual Address fr-,p _, b

That is, (p2+P3) x 2N + (b 1 + b 2 + b3) yield a new prob. f is unchanged.

Besides what has been mentioned, one other register will play an important

part in the address translation. In Figure 5-3 it is called the Task Train Table (TTT)

Base Register; this register plays an important role in meeting design objectives of

the Coherent System, as well as in address translating per se.

So far, the hardware has computed f_'-p---b. Now it must convert this to a

real address. Refer to Figure 5-3.

For this task, a train table is established when loaded. This contains entries

for all trains referenced by f. (f = 0 will be considered to refer to the train of the pro-

gram itself. Thus, that value is never assigned for referenced FTN's.)

When executing (assigned a CPU), a hardware register for this CPU contains

the high order part of the train table address for this task. Call this h. Then h_f

gives a reference within that table (performed by hardware). The entry in the train

table locates a page table with a value to be called g.

The page table thus specified was built at load time when f and FTN were

bound to an ATN (Actual Train Name). This page table represents the map of the ATN

into primary memory. Now g.-,p (still by hardware) locates the entry in the page table;
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and either the high-order part of the real address (call it r) is combined with b, r--b,

to give the final physical reference, or if the page is absent, a trap calls the Virtual

Store Manager.

5.2.1.5 Scratch Trains. For a program which needs a large working storage for the

duration of its execution, the Virtual Store Manager must be prepared to furnish scratch

trains. From the programmer's point of view, this is instantaneously available as he

is working with a virtual store. Yet the File System would like to distinguish such areas

of the program's virtual store from other intraprogram references. Whereas a refer-

ence to another instruction (via a branch) might call for the retrieval of a page belonging

to that program from a real train cell containing it, it should not be necessary to main-

tain in the system's virtual store the "blank" pages used as a scratch area by the program.

In this light, a scratch area should take the form of a formal file; yet, the scratch area

is never bound to an actual virtual store train representing permanent data. Therefore,

to the programmer, the reference is to a scratch area; but to the EFS it must be handled

and accounted for like a train (outside of the train which is the program).

These will be called scratch trains. They are known to the File System

through the program definition in much the same way as are formal basis or result

trains. The information needed for linking is built as part of the program definition

just as for formal trains, by the language translators. But the symbol used by the

program need never be known by the user constructing a job definition, since scratch

trains are never bound to job arguments as are basis and result trains.

5.2.2 Terminal Trains and Explicit Services

Terminal train service is concerned with the transportation of copy cells

between primary memory and terminal devices. Terminal trains are not addressable

by program instructions making references to a virtual store, and hence, are not known

to the Virtual Store Manager.

Undoubtedly, most user programs will confine their bases or results to formal

items or trains which are known to the system, and thus take advantage of implicit IFS

or EFS services. The data flowing between the system and its terminal devices would,

for the most part, be handled by services of the Coherent System. Examples are:

• Inputs to the Job Management System, and Services

(1) Program entries

(2) Item definitions
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(3) Job definitions

(4) Item entries

(5) Other commands and associated data

Outputs by the File System, such as Archive Data

Output by the JMS

(1) Interaction with user at terminal

(2) Messages to computer operators

Outputs by Display Services.

For these system programs, and for user programs which must deal directly

in transporting copy cells of terminal trains, a set of explicit services is provided.

5.2.2.1 The Program Interface. The amount of data prepared for a result terminal

train, or the amount to be input and processed, is not known to the EFS. Programs

concerned directly with such transportation functions must be in control of the real

primary storage used in operation with terminal trains, so that by sequencing explicit

requests for input or output, the same real storage area may be used repetitively to

hold data being transported.

The program interfaces with the EFS on the basis of a train and the copy cell.

A terminal train is symbolically named by the program and consists of a variable num-

ber of copy cells, which are numbered relative to the start of the train.

All copy cells should be composed of a string of a fixed number of cells (or,

at the lowest level, bytes) at the next lower level. As a further restriction, it is

proposed that this number (i. e., cell "level magnification factor") be a constant for all

levels, and be an integral power of two. It would then follow that the subcells in each

cell can be addressed with an address word of length appropriate to the cell level.

The programmer will define the formal terminal train to the language trans-

lator by supplying:

(1) A Formal Train Name

(2) The copy cell size (an integer k, indicating 2ku)
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(3)

(4)

Number of copy cells needed for buffering (i. e.,
the service window)

Branch for handling hard failures (optional).

Item (1) will be carried in the program definition for use by the Task Manager.

The language translator will generate the following on behalf of the programmer:

(1)

(2)

(3)

Buffer space within a scratch train

The means for loading base registers for addressing
the buffer area on the basis of the Formal Train

Name

A control block, carrying preceding items (1) through
(4), and containing fields for error information; also

the necessary controls for allowing the task to block
itself while waiting for buffers to clear.

The program may call the EFS for reading, writing, or blocking. For read

and write, the specified copy cell of the specified train will be connected to the terminal

device with an I/O command issued by the Data Traffic Manager.

5.2.2.2 The User Interface. The formal terminal train is bound to a terminal device

at job request time. The device is entered by the Job Management System into tables

referenced by the Terminal Train Manager.

The Job Management System will activate, or "open" the train at this time,

unless another task has seized the resources in question, in which case the scheduling

of this job will be delayed. The train is deactivated either at the end of the task or at

the end of the job, depending upon the train binding of the remaining tasks in the job.

5.2.2.3 Implicit Terminal Train Services. One might conjecture that something

similar to the EFS Implicit Services (through the Virtual Storage Manager) can be pro-

vided for dealing with terminal trains. Although it is possible that something like this

could be developed under certain conditions, study is needed as there are technical

difficulties. For example, a program which produces display output as a terminal

train is not limited in the amount produced. Nor is it possible for the EFS to predict

(i) when the program has finished writing into a particular copy cell, or (2) the number

of copy cells which will be filled when the task is complete.
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One possible approach would be to provide implicit service to programs for

which the following holds (for the example):

(i)

(2)

Bytes of copy cells are stored into only once by the

program.

The mode is sequential.

Thus, a scratch train can be provided. As the program crosses page bound-

aries, previously referenced pages may safely be output to the terminal device bound to

the formal terminal train. These limitations are not severe for the vast majority of

programs dealing with terminal trains, and so this possibility may be pursued in the

future.

5.3 TRAIN PROTECTION AND ARCHIVES

Trains in the virtual store are protected by the EFS from unauthorized access,

accidental loss, and erroneous modification. Unauthorized access is prevented by

checking the user's classification and group against entries in a cell access rights table.

Entries in this table are made at train definition time on the basis of the security attri-

butes in the command, leading to the definition of a train (e. g., Item Entry or Program

Entry).

Protection from accidental loss and erroneous modification is offered by

avoiding the overwriting of existing cells in a permanent train. To accomplish this,

an edition number is assigned to each cell as it is written. The edition number is

maintained in the track map, modulo 2n {where n is some number, e.g., two), and is

incremented each time the cell is written.

Each time a page of the virtual store is modified by a task, it is considered

as a new edition. If a program's formal train is a result train, and was bound to a

virtual store train through the job definition, the successful termination of the task calls

for certain virtual storage management functions to be triggered by the Task Manager.

Any pages of the result train which were made available to the task during its execution

must now be replaced into the train cell as new editions. Also, these are written to

the archives. Only when both of these functions are accomplished will the train cell be

unlocked for use by other tasks as a basis train.

5-15

AUERBACH



5.4 MULTILEVEL STORAGE MANAGEMENT

The technology of digital storage of data is undergoing rapid evolution.

However, as advances in the technology improve the physical density, capacity, and

access speed of data, there tends to persist a hierarchy of access times within the

data base. There is a hierarchy certainly across storage hardware types. Registers,

thin film, magnetic core, delay line, drum, disc, and magnetic card represent an

ascending sequence in density, capacity, and access speed. Each of these device types

can be thought of as being at a lower level of the storage hierarchy than that of the

preceding type.

In addition, within a given single memory device there is usually a "sequential

component" which makes adjacent cells more easily accessible than cells at random.

For example, the data on a given "cylinder" of a disc unit can be considered as having

the same relative level of accessibility, while its absolute accessibility depends dynam-

ically on the current position of the access arms and the current rotational position of the

discs. Similar considerations apply also to most other storage devices.

Intelligent allocation of trains to storage devices at these various levels is

needed in order to maximize system responsiveness. A train might be moved up the

hierarchy for any one of a number of reasons:

(1)

(2)

(3)

In general it is addressed frequently.

The user has given it special status, perhaps
because its use is connected with emergency
measures.

A job which has been requested is exceptionally
active in addressing its formal train.

The criteria to be employed, and the method by which the EFS is commanded

to employ them, would be developed in the context of a particular implementation.

Disregarding the form of the algorithms to be employed, the Coherent System

would endeavor to reach a proper compromise between latency time and flexibility, as

suggested in Appendix A, Figure 1 of the INTIPS system evaluation.
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Also, the movement of a train from one real address to another will not

require heavy restructuring of EFS tables, as the system's virtual address would

remain constant. The tabular function TRACK LOCN(VA)=RA must be altered.

Below this level, trains are known by their virtual address.
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SECTION VI. INTERNAL FILE SYSTEM

6.1 THE ITEM

The data entities of the IFS are called items. All items are part of the most

generic item of the IFS, called the data pool. Items have names and definitions which

are stored in a directory which is itself a part of the data pool. Although both the

definition of the structure of the item and the data values representing an instance of

the item are in the data pool, it is possible to discriminate between them by using the

modified forms, item structure and item instance. When unmodified, the word item

will normally refer to both the structure and its instances. Instances of items are

stored in the common data base, and structural definitions are stored in the directory.

Both are part of the data pool.

An inclusion relation is defined among items, and a given item may be

either simple (a "terminal" item) or composite (compound). Simple items are called

fields (or scalars), and their instances are stored as values in the data base. (A field

and its value correspond roughly to a scalar variable and its value in a programming

system. )

6-1

AUERBACH



Composite items are either statements or arrays. A statement is a composite

item which subsumes some definite number of distinct subitems. A subitem of a state-

ment may be a field, statement, or array. An array is a composite item whose members

(array elements) are always instances of a single statement, called a record. The

instances of a record are repeatable a fixed or variable number of times, and are identi-

fiable by a set of indices of known dimension -- such as element i of a one-dimensional

array; element i, j of a two-dimensional array, etc. Any given array dimension may

be either fixed or variable.

A vector would be a one-dimensional array of fixed size whose records contain

a single scalar. A logical file in data processing terminology is a single-dimensional

array of arbitrary length. An array in general may have one or more dimensions, and

each dimension may have either a fixed or variable size. The record statement may

consist of fields, other statements, and other arrays. In some data processing sys-

tems, the term "repeated group" or "repeated set" is sometimes used to refer to arrays

that occur within records. The number of nested levels of items within items is logically

unlimited and may reflect the hierarchic structure of objects in the outside world {for

example, assemblies and subassemblies of components in equipment and systems}.

Fields {sometimes called scalars or properties} are the terminal items in

the data base and take specific values for each occurrence; e. g., the property pro-

pulsion system in an array space vehicles may take the values chemical, nuclear, ionic,

etc., depending on the specific record involved.

Fields are simple (terminal) items in that they contain no subitems. The

definition of a field is complete when its type (i. e., character set), size, and name are

given. The definition of an array is complete when the size of each of its dimensions,

its name, and the definition of the array element {record) are given.

These concepts are sufficient to represent data structures which can be shown

topologically as a tree.

In a tree, each item can be represented as a node which belongs to at most

one parent item (node}. Tree structures can be mapped into cells and trains so that

the fields encountered in a regular tree-coursing path which exhausts all branches

systematically, left-to-right, produces fields which are contiguous in the train cell
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address space. For example, it is possible to have a sequential organization in which

adjacent fields of each record are addressable contiguously in the train cell, and similarly

for each record. If the record contains other embedded items, these too can be mapped

contiguously in the address space.

Data hierarchies which are more general than trees (i. e., contain items

which are part of more than one parent structure) require some mechanism other than

adjacency in the cell, such as links or pointers in the data, to carry the processor from

one item to a related item. A link is a reference from one item to another item which

is physically remote. More generally, a link is a device for representing a logical re-

lationship between one item (the source item) and another (the target item) which is

independent of the need for physical adjacency of source and target items.

The ability to employ linkage in a data management system is important

because the use of linkage as a pointing mechanism permits several different logical

relationships between a source item and the target item to which it points. It transforms

a tree into a more general network.

6.2 ITEM STRUCTURE REPRESENTATION

Data structures can be defined and represented in several ways. Figure 6-1

shows four methods for representing item structures. A structure of four levels is

defined in this example, which corresponds topologically to a rooted tree.

Representation (a), called an indented tree, has the most intuitive appeal and

would be used in the initial design of the structure. In the rooted tree, each increase

in depth level is indicated by indenting to the right. Items connected to the same vertical

line are at the same level. Structures are indicated by boxes of three different shapes:

rectangular for arrays, hexagonal for records, and oblate for statements. The name of

each structure appears in the box, and the name of simple items (scalars, fields, or

leaves of the tree) appears after a slash joined to the vertical line representing its

parent structure. A letter and number appearing in front of a field name indicate the

character type and size of fields (V signifies variable length). Table 6-1 defines the

input character set and conversion for each character type.
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TABLE 6-1. FIELD CONVERSIONS

Character Set
Field Type on Input Conversion

Binary

Octal

Integer

Decimal

Exponential

Alphanumeric

Text

Coded

Hierarchy

0, 1

0 ..... 7

+, -, 0 ..... 9

+, -, 0 ..... 9

+, -,., 0 ..... 9, E

any character

any character (Note 1)

any character

any character

binary unsigned

binary unsigned

binary signed

BCD signed

floating point

none

none

binary (Note 2)

tree code (Note 3)

Note 1:

Note 2:

Note 3:

For a text field, a hierarchy of delimiters can be defined such as space,
line terminator, statement terminator, and page terminator.

The value set for coded fields is given in the definition. The value is coded
on input and decoded on output.

The value structure for hierarchy fields is given in the definition. The
value is coded on input and decoded on output.

The items of each structure are numbered in sequence, 1, 2, 3, etc., except

that the record level under a file takes the variable "R" for each dimension, indicating

that the structure is repeatable the number of times indicated at the end of the vertical

line. Each item in the structure definition can be given a unique number by stringing

together the item sequence numbers in the unique path from the root to the item. Thus,

the unique number for Item G is 1.3. R. 1.

The logic of this structure definition is not stratified as to level of storage,

so it can be used to define internal system tables and program parameters, as well as

large structures for secondary storage. There is no logical need to distinguish a file

and records in secondary storage from a table and entries in core, so the same program

logic is applied to both.
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Representation (b), called the Indented Outline, follows closely the indented

tree form, except that the box shapes are indicated by a character. This form can be

keyed from the tree as input to the Item Definition Job. Representation (c), called the

Item List/Term List combination, is similar to the internal representation of the

structure in the system directory. In this form indentation is not used; instead, the

size of statements and records is given (in terms of the number of subitems).

Representation (d), the Item Image, is a linear parenthesized string which

can be used as input to define a structure. The scope of each statement is indicated

by parentheses. Except for arrays (files), the name of each compound item follows the

left parenthesis. In the case of arrays the scope is indicated by brackets and the size

of each dimension precedes the name.

Because the logical structure of all data items is defined in this structure

definition, which is stored internally as a system table (described, incidentally, with

the same convention), considerable leeway can be tolerated in the format of input data.

Data may be keyed in strict field sequence in agreement with the structure definition,

with empty fields indicated by a slash, or without regard to field sequence if each out-

of-sequence field is tagged with its name or identifying number. No blanks or leading

zeros need be keyed. The system can automatically justify data and supply blanks or

leading zeros. The system also rearranges the data in proper sequence, filling

missing fields with blanks where necessary.

When record numbers are supplied to replace the R's, the structure definition

number of an item becomes a number for a unique data item instance in the data base.

This property is exploited to provide an efficient logical index to data items for efficient

retrieval from random-access storage devices. The identifying number of an item in

the structure definition is called an Item Class Code (ICC), and the number of an item

in the data base (ICC with R-values supplied) is called an Item Position Code (IPC). The

ICC and IPC of items are generated and used internally by the system, and the general

user need only use the names of the items he is defining, requesting, or processing.

The structure definitions are collected into one comprehensive directory for

all items in the data pool. An alphabetical listing by item name directs the system (by

ICC and IPC) to all occurrences of the item as structure definition and data. Thus,

information (both structure definitions and data) is available to the system's users
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without prior knowledge of the existence of the data or its detailed structure. The user

need know only the generic names of the data to be investigated. There is no need to

approach the data on a file-by-file basis, nor is the user limited in any way by the

original structure definitions. Rather, an inquirer can be presented with a structure

definition in a dialog mode query so that he may take advantage of the structure for

more efficient use of the system and its data. This lack of constraint at both ends of

the process -- data definition and data retrieval -- provides a new measure of flexibility

in data management processes. Incidentally, it is this philosophy of centralization of

structure definition in an overall system directory that permits all system data to be

regarded as a "common pool. "

This unusually non-constraining approach to data definition and retrieval is

accessible to the system's administrators, programmers, data specialists, and

operational users through a user-oriented job language and job-managing executive.

Each of the preceding users must be given the appropriate language tools for effective

execution of tasks in his domain.

6.3 ITEM LINKAGE

Item linkage falls into four general categories which will be discussed in the

following paragraphs:

(1) Sequencing

(2) Associative

(3) Hierarchy

(4) Adjoining.

Each type of linkage will be discussed in terms of the item types involved, the relation

represented by the link, and a diagrammatic representation of the linkage and its

interpretation.

(1) Sequencing Linkage

In Sequencing Linkage the link imposes an ordering relation
between the source and the target items, which must be
records of the same file (or, more generally, elements of
the same array). Two Sequencing subtypes may be identified,
since the link may be intended as a pointer to the previous
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(2)

(3)

record or to the next record of the chain. Both the previous
and the next. type of pointer can be used together if it is de-
sirable to traverse the chain in either direction from any
point. By means of Sequencing Linkage it is possible to order
a file by more than one criterion, employing a linkage chain
for each ordering desired. Thus, a given file may be sorted
physically by employee number and sequenced logically by
name (alphabetic ordering) and by salary (numeric ordering).
In this case one ordering is given by physical sequence and
two by Sequencing Linkage chains. An example of a diagram-
matic representation of a Sequencing Linkage chain is given
in Figure 6.2. Figure 6-2 (a) shows an item class definition
in which the record class is represented by one structure,
and Figure 6-2 (b) shows two specific records in the chain.

Associative Linkage

In Associative Linkage the link is used to establish a chain
of items which share a particular value for a given property
(field). This linkage can exist between items of any class as
long as the specified property and value hold. Since the
same value for the field exists for every item in the chain,
there is no implication of logical ordering in the link.
Rather it is a directive to see the target pointed to as an
item associated with the source since it shares a given
property and value. As in the Sequencing Linkage, an
independent chain may be established for each property of
the item. For example, in a file of automobiles, there
may be a chain for all red cars, all Fords, all V8's, etc.
A diagrammatic representation is given in Figure 6-3.

Hierarchy Linkage

In Hierarchy Linkage the source and target must be items
of different classes (e. g., records of different files). As
in the case of Sequencing Linkage, two reciprocal subclasses
may be defined since the linkage may represent the relation

Includes or the relation part-o_f. In either case, a hierarchy
of items on different levels is established. In the case of
includes, the source item is a parent of (i. e., master) or
subsumes the target item. In the case of part-of, the source
item is a child of (i. e., slave) or is subsumed by the target
item. A diagrammatic representation is given in Figure 6-4.
Note that this achieves a logical embedding of the target item
in the source item without implications of physical adjacency;
hence, if the target of an includes link were already part of
another structure (either by physical embedding or independent
linkage), it represents a non-tree (lattice point) connection in
the structure. There is no limit to the number of target items
in a Hierarchy Linkage from a single item.
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(4) Adioining Linkage

In Adjoining Linkage, the source and target must be items

of different classes (e.g., records of different files). The

link represents the relation of adioined-with, which establishes

the target item as an extension or continuation of the source
item. Both items are considered to be on the same level.

For example, the fixed information and the variable information

in one logical item may be split into two files (for processing

efficiency) with an adjoining link used to establish the variable
record as a continuation of the fixed record. A diagrammatic

representation is given in Figure 6-5.

6.4 METHODS OF LINKAGE IMPLEMENTATION

Data linkage can be implemented in several ways, depending on the type and

directness of the connection between source and target item. In general, there is a

tradeoff between speed of access and flexibility and speed of modification as the degree

of directness in the link is changed. The implementation methods are discussed in the

following paragraphs.

(I) Direct Addressing from Source Item

(2)

The most direct data linkage is achieved by a link
field in the source item, which gives the direct

physical address of the target item. This provides

for direct accessibility of the target item but represents
a maintenance problem if the target item is moved

physically.

Logical Item Position Code in Source Item

Independence from physical data movement can be achieved
if a logical code is used in place of a direct physical address.
The Item Position Code can be used to give a unique designation

to the logical position of each item in the data base, and has
the desirable properties of designating the entire logical scope

of the target item and being independent of physical location.

(3) Criterial Items

The two methods discussed in Items (1) and (2) require a
specific link field in the source item which supplies structural
information but which is superfluous from a data content point
of view. To establish linkage without this cost, it is often

possible to utilize fields which carry data information values
and would be present in the record whether or not linkage was

desired. This is done by establishing a set of one or more
fields which, when taken together, can be considered as a
criterion for linkage to another record (or records, or other

items). This field (if a single item) or statement (if a
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(4)

(5)

collection of fields is required) is called the linkage
criterial item of the item. By identifying such a
criterial item in the item class definition of both the
source and the target items, it is possible to establish
a linkage between one or more records in the source
file and one or more records in the target file. For

example, in a mission administration data base (see
Figure 6-12), mission may exist as a field in both the

Flight Plan file and the Personnel files. By establishing
mission as a linkage criterial source item in the Flight
Plan file and a linkage criterial target item in the Personnel
file, a set of target records in the Personnel file is
designated by each record in the Flight Plan file. If
mission is an indexed field, then the target records can
be quickly established.

Shadow Linkage

When the records of two ordered files of the same size have

a one-to-one relationship, an implicit linkage can be es-
tablished by considering one file as the Source file and the
other as the Target file. In this way linkage is established
between the i-th record of the Source file and the i-th
record of the Target file, without any requirements for
specific fields with linkage functions in either file. This
technique is called Shadow Linkage and can be used to
establish only Hierarchy or Adjoining Linkage types, and
then only for files which are ordered and have a corres-
ponding record in each file. (A real distinction between
Shadow Linkage and Criterial Item Linkage exists only
where the sequencing key does not appear as a field in both
files. )

Linkage Tables

Linkage can be established independently of data content or
ordering by maintaining tables of linkage information in a
directory which is separate from the files of data values.
Either direct address or Item Position Code can be used with
this technique. The link can be designed as a field in the
source item, and recourse to a linkage table for the file can
establish a target item (or items), if any, for each source
item.

6.5 OTHER ITEM STRUCTURES

The data items previously defined (structures, arrays, links and fields) can

be augmented with Code and Hierarchic Valued Fields and Variable Structures as dis-

cussed in the following paragraphs.
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6.5.1 Coded Valued Fields

It should be possible for the user to define a field type called coded (C) which,

in addition to a name, has a range of values it can take as specified in the item definition.

For example:

C2; Sex {Male, Female}

C6; Color { Red, Orange, Yellow, Green, Blue, Violet }

The system would assign a binary integer to each value, code the data to

binary on input, and decode the data for display.

6.5.2 Hierarchic Valued Fields

The concept of Hierarchic Valued Fields is related to Coded Valued Fields.

Instead of an ordered set of values, however, the range of values is partially ordered in

the item definition, for example:

H4, 3; Location { Mass (Boston, Springfield, Lexington),

New York (New York (Manhattan, Brooklyn, Queens),

Albany, Buffalo), New Jersey (Newark, Camden),

Pennsylvania (Philadelphia, Harrisburg) }

The "H4, 3" in the item definition specifies that the field is hierarchic with at

most two levels and three values in any one "family, " Each value would be encoded

using a tree code which names each path in the structured value; e. g., "Brooklyn"

would be encoded as "2.1o 2. " The advantage of hierarchic coding (in addition to

saving space) is the ability to recognize one value as including another. Thus, a request

for records satisfying the condition

Location = Mass (coded as 1)

is automatically satisfied by records containing

Location = Springfield (coded as 1.2)

by immediate examination of the coded form of the value.
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6.5.3 Variable Structures

A data structuring situation occasionally arises in which the interpretation,

or range of values, of one field is dependent on the value of another field. For example,

in _i personnel file, the value of the fields, sex and marital status, determines whether

the field, maiden name, is relevant. In order to communicate this logical dependence

between items more clearly than simply permitting some items to be optional, a

switch item can be defined. A switch item is a structure containing a known number of

subitems. The value of the first subitem determines which of the subsequent subitems

is to be employed in each occurrence of the item in the data base. For example, assume

a personnel record has fields for sex, marital status, spouse's name, and maiden name.

Clearly the last two fields are irrelevant for single persons, and maiden name is

relevant only for married females.

This dependence may be shown in tabular form (see Table 6-2). It may also

be shown as an indented tree data structure (see Figure 6-6). In this example, the

fields marital status and se.____x,are the switch control items; these must be coded field

value items whose values are given. There are 2 x 2 or 4 possible values for the

switch control items so there must be four switch value items in the remainder of the

structure. For any one record in the data base, one of the four items will be chosen

by the values of marital status and sex. Marital status will determine the most signi-

ficant bits of the path number, and sex will determine the least significant bits.

TABLE 6-2. DATA DEPENDENT STRUCTURE

Sex

M F

S A A
Marital

Status
M Spouse's Name Spouse's Name

Maiden Name

Another example is shown in Figure 6-7. This example shows the structure

of the Private Memory Table in the Berkeley Time-Sharing System.* Each record is

a one-word item which shows the status of one of the 64 possible logical pages of a

* See Appendix A.
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Values

i
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Switch Item_

(

O0

O1

10

Control )

/ Marital State

/ Sex {Male,

{ Single,

Female }

ingle Male )

/A

_ingle Female_

/A

_arried Male)

J Spousers Name

Married Femal_

' / Maiden Name

/ Spouse's Name

Figure 6-6. Switch Item Data Structure
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Private Memory Table

R

I

!

L
Page Data Entry

/$3; Ownership [ unassigned, local,

/ B22; Null _-J

/C2; Storage Status
I Core, Drum

fB20; Drum Address

B22; SMT Entry
v

shared }

Figure 6-7. Switch Item Record in Private Memory Table

process. A two-bit field specifies page ownership. The interpretation of the remainder

of the word depends on the page ownership field. If the page is unassigned, it is unused;

if owned locally, it shows storage status and drum address; and if the page is shared, it

points to an entry in the Shared Memory Table. All this information is shown concisely,

and is graphically clear in the indented tree diagram.

6.5.4 Synonyms

When a data base is shared by several users, it may be desirable to permit

each user to have a name structure defined over overlapping subsets of the data base.

This permits each usertousenames meaningful to him to preselect items of interest

without requiring redundant storage of data in order to meet his requirements.
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6.6 THE DATA POOL

All data items (that is, data accessible through IFS data services) are stored

under a single generic statement item called the data pool. The data pool, in turn, is

composed of four Statements called IFS data, EFS data, JMS data, and common data,

as shown in Figure 6-8. The IFS data consists of five tables used by the File System

for recognition, definition, and retrieval of all items in the data pool. These tables,

shown in Figure 6-9, are the Name Encoding Table, Item List, Name List, Train List,

and Index. The EFS data consists of three tables as shown in Figure 6-10. The

functions of these tables were discussed in connection with the EFS.

The File System provides several levels of service, depending upon the level

of service requested and the stage of parameter binding at the time the service is pro-

vided. The sequence of levels, and how the file system tables are used, is shown in

Figure 6-11.

Data Pool )

IFS Data )

EFS Data )

JMS Data >

Common )Data

Figure 6-8. Coherent System Data Pool
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IFS Data )

t Name EncodingTable

] Item List 1

I NameList I

Train List [

Index ]

i

Figure 6-9. IFS Data

EFS Data

Train Name List

Train Attribute Table[

Track Location Table

Figure 6-10. EFS Data
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File
System
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Item

Services

Name

ICC 

Condition_

VA J

L

Service Level
and Arguments

Cell
Services

Data

RA

Encode
Name

T
Copy
Item

!
I

I

T

Conditional
Search

Item

Name

_ (Name):J Name [
ICC [ Encoding[

ICC

DgeCCi_)it_on [ Item [

(Value) =
IPC
IPC

Get _(IPC) = VA [ Page ]

PageIII

I _VA

[ [Track |

Get L(VA) = tL;k ] Location ]

Trackr,,

' @
Copy _RA) = DataData

Legend

ICC = Item Class Code
IPC = Item Position Code
VA = Virtual Address
RA = Real Address

Figure 6-11. File System Service Levels
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The JMS data contains all the tables required by the JMS as discussed in

Paragraph 4.2 and illustrated in Figure 4-2. These are:

• User List (password, access, and modification rights)

• Job Definition List

• Program Definition List

• Job Queue

• Task Queue

• Binding List

• Job Data

• Task Data

The common data contains instances of data items defined by the user. Access and

modification restrictions are defined along with the item structure. The data description

language permits the user to specify a wide range of data structures. A definition of a

hypothetical data base is given in Figure 6-12. The structural description of the item

is transformed by the Item Definition Job into entries in the Name Encoding Table,

Item List, and Name List of the IFS data.

Data can be stored and recalled to core memory service windows only by

means of file system services which use the file system tables. The functions of these

tables include translation of the names of data items into:

(1) Logical codes (ICC) which describe the logical position of
the items in the common data structural definition

(2) Logical codes (IPC) which describe the position of the item
instances in the common data

(3) The virtual address of the cells in which the data is located

(4) The real address of the track in which the data is located.

Figure 6-11 shows what each table requires as input and what each is de-

signed to provide. The functions of the file system tables are as follows:

(1) Name Encodin_ Table

The function of the Name Encoding Table is to convert
the name of an item from its alphanumeric form to a

coded form which describes the logical position of the
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!

2 --_ Personnel

I
I
!
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f
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I
I 2

3

4

>
1 [ / Mission >--

2 __ Date

3 Duration
4 Vehicle

5 Crew J

>
2
3 , /
4

5

I 4 Status ] R
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I
I

!

!

I
i 1
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Position

ID Code >---1
!

I

!

!

/ Name

Position

ID Code <------

Mission <--........

Skills J

>
Skill Code

_4 Rating

>
/ Title

/ Experiment Code
/ Project Leader

[ Equipment [

____<

t 1
t
I 2
I 3
I 4
I 5
L_.

/ Module <- .....
/ Status
/ Module Code

/ Part-of >"-- 7
/ Includes >--- -]

._J

>
I Module >--]
2 Quantity ,

I
I
I
I

Figure 6-12. Data Base Example
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(2)

(3)

(4)

item in the data structure. The coded form, called an

Item Class Code (ICC), consists of integers which
represent the nodes on the data pool tree structure which
lie on the path from the data pool node to the node named.
For example, the ICC of the skills array in Figure 6-12
would be 1.2. R. 5. (A given name would have more than
one ICC if it is used more than once in the data pool.) The
letter "R" in the ICC indicates that at that point there is an

array element (record) which is repeated in the data base
as many times as instances of the item are recorded.
Elements of a multidimensional array would have an R-
value for each dimension.

Item List

The Item Class Code must be converted to a code designating

a unique instance of the item before the instance of the item
can be retrieved from the real store. This is done by sup-

plying values for the Ws, creating the unique instance code
called the Item Position Code (IPC). The Item List is used
for this conversion, either alone or with the Index, depending
on whether the request is conditional and the item is indexed.
The entries of the Item List are ordered by ICC and supply
a definition of the item in terms of its type and size. The
Item List entry is linked to a Name List entry, which gives
the name of the item, and to an Index Table if it is an indexed
field.

Index

For each indexed field, the Index is ordered by the values
the field has taken (or can take). For each value, a list of
R-numbers is given for the array elements which contain
that value. Thus, a set of IPC's can be constructed for
each value. Another function of the Index is to retain a
count of item usage, by value. It is from these tallies that
the need for indexing, or restructuring can be determined.
Restructuring is the act of converting the instances of a data
item to conform to anewlydefined structure. It may be done
to make the structure more efficient for a particular purpose.

Page List

Since an IPC designates a unique item instance, it embodies
sufficient information to enable the designation of its appropri-
ate train and cell (or ceils). Determining the virtual address
(VA) of the page to be called is the function of the Page List.
The Page List is ordered by the IPC of the first item of each
page and supplies the virtual address of each page.
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(5) Track Location Table

The Track Location Table maps the VA to real address
(RA) for each track and access module on the real store.

6.7 DATA RETRIEVAL

The data retrieval strategy used by the system will be illustrated by an

example. Consider a hypothetical data base of purchasing information shown in Figure

6-13 in indented tree form and in Table 6-3 in indented outline form. PURCHASING is a

statement containing three files.

The ITEM file is a catalog containing a record for each item which might be

ordered on a purchase order. Each record in the catalog contains three required fields.

The ORDER file is a list of outstanding purchase orders. Each record contains identi-

fying informat:'on for a purchase order and an ITEM LIST. The ITEM LIST contains a

record for each item on the purchase order. This is an example of a file embedded in

each record of a higher level file. The VENDOR file contains records describing

vendors with a list of the active purchase orders for each vendor.

In the figure, the item PURCHASING has the ICC 1, since it is the parent

node of the entire structure. Its subitems are numbered on the next level: 1.1 for the

ITEM file, 1.2 for the ORDER file, and 1.3 for the VENDOR file. The records of the

files occupy a level in the structure. The level is represented by an R in the ICC. The

subitems of the records are numbered on the next level.

The Item Position Code (IPC) is used internally to identify units of data in

the data pool. The ICC becomes an IPC when a record number replaces each R in the

ICC. For example, the IPC 1.1.3.1 stands for the unique occurrence of the ITEM NO.

field (1.1. R. 1) in the third record of the ITEM file. The IPC 1.2.5.6 represents the

ITEM LIST file (1.2. R. 6) for the purchase order identified in the fifth record of the

ORDER file.

6.7.1 .Primary Directories

The structural description of the data is maintained in the system directories.

The primary directories contain the information from the item definition. The primary

directories are the Item List, the Name List, and the Name Encoding Table. These
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• I

Purchasing_

'2

3 H Vendor

4

I
D 1

Vendor No.

Vendor Name

Vendor Address

I Order

P.O. No. 2

2 Due Date 3

3 Requestor 4

4 Vendor No.

m

Item No. I

Vendor No. I

Price

Description

-_Order List] 5 Value

o |
I

I
I

P.O. No.

Requestor

i

11 Item No.

ii Quantity
Cost

Note: The letter "R" indicates that the item is a record which is repeated in the
data as many times as the item is recorded.

Figure 6-13. Purchasing Item Structure
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TABLE 6-3. DEFINITION FOR THE PURCHASING ITEM

ICC ITEM DE FINITION

1

1.1

1.1. R. 1

1.1. R.2

1.1. R. 3

1.1. R. 4

1.2

1.2. R. 1

1.2.R.2

1.2. R.3

1.2.R. 4

1.2.R.5

1.2. R.6

1.2. R. 6. R. 1

1.2.R. 6. R. 2

1.2.R. 6. R. 3

1.3

1.3. R. 1

1.3. R.2

1.3. R. 3

1.3. R.4

1.3. R.4. R. 1

1.3. R. 4. R. 2

PURCttASING, S

ITEM, F

ITEM NO., I, V

VENDOR NO. , I, 4

PRICE, E, V

DESCRIPTION, A, V

ORDER, F

P.O. NO., I, 6

DUE DATE, D, 6

REQUESTOR, A_ V

VENDOR NO. , I, 5

VALUE, E, V

ITEM LIST, F

ITEM NO. , I, V

QUANTITY, I, 5

COST, E, V

VEN'DOR, F

VENDOR NO. , I, 4

VENDOR NAME, A, V

VENDOR ADDRESS, A, V

ORDER LIST, F

P.O. NO., I, 6

REQUESTOR, A, V
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!

are used to focus in on the data and to describe its structure. They function as a guide

in interpreting the data so that it may be delivered to a program in a suitable form for

processing.

6.7.1.1 Item List. The Item List is at the center of the directory system. It is a file

with a record for each item (node) in the data pool structure. The records are in order

by the Item Class Code of the item. Each Item List entry contains the item type and

the size of the item. The size of records and statements is the number of subitems

they subsume directly. The Item List also contains other information about the item.

However, the primary structural information is the item type and size.

Table 6-4 shows the Item List for the PURCHASING item in the third column.

The item type and the size are shown in each entry. The structure of an item is implied

by the sizes given for nonterminal items.

!

I

!
I

I
6.7.1.2 Name List. The item names and units are maintained in a Name List file

which is parallel to the Item List file. These elements are maintained separately

because they are not needed to interpret the data structure and it is desirable to

store the structural information as compactly as possible in the Item List. For each

record in the Item List there is a record in the Name List, and the corresponding

record numbers contain information about the same item.

6.7.1.3 Name Encoding Table. The item name is used as the identifier of the item by

system users. The ICC is used as the identifier by the system. To enable the system

to translate from an item's name to its ICC, the Name Encoding Table (NET) is main-

tained. The NET is a file containing a record for each unique item name in alphabetical

order. The ordering permits rapid translation from an item's name to its ICC. Since

there may be more than one item with a given name, each record of the NET contains

a file of ICC's corresponding to a single name. Table 6-5 shows the Name Encoding

Table for the purchasing statement. In practice, the names of other items in the data

pool would be merged with the names of the items in the purchasing statement in a single

NET.

i
!
I
I
I

i
I

6.7.2 Data Representation

The IFS treats an entire data pool as an unformatted stream of binary bits.

This stream is segmented arbitrarily at any item boundary. Since no account is taken

!
I
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TERM LIST

PURCIIASING

ITEM

ITEM NO.

VENDOR NO.

PRICE

DESCRIPTION

ORDER

P.O. NO.

DUE DATE

REQUESTOR

VENDOR NO.

VALUE

ITEM LIST

ITEM NO.

QUANTITY

COST

VENDOR

VENDOR NO.

VENDOR NAME

VENDOR ADDRESS

ORDER LIST

P.O. NO.

REQUESTOR

ICC

1

i.i

I.I.R

i. I.R. i

i. I.R. 2

i. I.R.3

I. I.R. 4

1.2

1.2.R

1.2.R. 1

1.2.R.2

i.2.R. 3

i.2.R. 4

1.2. R. 5

1.2.R. 6

i.2.R. 6.R

1.2.R. 6.R. 1

1.2.R. 6.R. 2

1.2.R. 6. R. 3

1.3

1.3. R

1.3.R. i

1.3.R.2

i. 3.R. 3

1.3.R.4

i.3.R.4. R

1.3.R. 4.R. i

i.3.R.4. R. 2
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LIST

S, 3

F,V

R, 4

I, V

I, 4

E, 6

A, V

F,V

R, 6

I, 6

D, 6

A, V

I, 5

E,V

F, V

R, 3

I, V

I, 5

E, 7

F,V

R, 4

I, 4

A, V

A, V

F,V

R, 2

I, 6

A, V
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TABLE 6-5. NAME ENCODING TABLE

NAME ICC FILE

I
I

I

COST

DESCRIPTION

DUE DATE

ITEM

ITEM LIST

ITEM NO.

ORDER

ORDER LIST

P.O. NO.

PRICE

1.2. R. 6. R. 3

1.1. R. 4

1.2.R. 2

1.1

1.2.R.6

1.1. R. 1
1.2. R. 6. R. 1

1.2

1.3.R.4

1.2. R. 1

1.3. R. 4. R. 1

1.1. R. 3

PURCHASING

QUANTITY

REQUESTOR

VALUE

VENDOR

VENDOR ADDRESS

VENDOR NAME

VENDOR NO.

1

I. 2. R. 6. R. 2

1.2. R. 3

1.3. R. 4. R. 2

1.2. R. 5

1.3

1.3. R.3

1.3. R. 2

i. I.R.2
1.2.R.4
1.3.R. I

I
I
I

I
I

I

I
i
I

I

I
I

|

I
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of word boundaries or the coding mechanisms of the devices, the data pool segments

are independent of the characteristics of the computer and the storage devices. The

service routines that interpret the data stream with the aid of the system directories

are computer dependent. This approach focuses the computer dependence of the system

in a small set of routines.

6.7.2.1 Data Stream. A hypothetical example will be used to explain the system's

mechanism for representing data. Figure 6-14(a} contains a structure diagram of a

statement named A. It consists of the field a, the file B, and the field h. The file B

contains the field b, the statement C, and the file D, and the field g. The statement

C contains two fields and each record of D contains two fields.

The files, records, and statements in a structure relate to their subnodes as

a single entity, but only the fields take on values in the data. The "buss mesh" diagram

in Figure 6-14(b) emphasizes this character of a structure. It shows the string of

fields, a through h, emanating from vertical bars and representing the nonterminal

items. The mesh arrows around the B and D records indicate the cyclic nature of

these structures. To represent an actual data stream the buss diagram can be shown

in expanded or "tree" form (see Figure 6-15}.

Only field values occur in the data stream. The data stream, represented

in the figure by the column of subscripted letters at the right, consists of values for

the fields. The interpretation of this data stream, with the Item List as a template,

is symbolized by the buss tree diagram. _'l_,_eexample assumes that there are three

records in file B, with three records of file D in the first record of file B, four in the

second, and two in the third.

6.7.2.2 Segmentation. The fields in the data stream must follow each other in the

strict logical sequence dictated by the data pool structure. This does not mean that the

data must be stored in a strict, physical sequence. The IFS segments the data stream

and incorporates the ability to store the segments anywhere on the available devices.

The logic of the system permits the segments to be of arbitrary size.

In writing data, the fields of the data stream are composed in memory cells

of page size under the direction of the Item List. When a page is full, it may be stored

in any available location of any storage device. The page is identified by the Item

Position Code (IPC) of the first item it contains. This IPC is used as the key whenever

the page is retrieved.
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(b) Buss Mesh Diagram

Figure 6-14. Sample Structure
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IPC

1.1

1.2.1.1

1.2.1.2.1

1.2.1.2.2

1.2.1.3.1.1

1.2.1.3.1.2

1.2.1.3.2.1

1.2.1.3.2.2

1.2.1.3.3.1

1.2.1.3.3.2

1.2.1.4

1.2.2.1

1.2.2.2.1

1.2.2.2.2

1.2.2.3.1.1

1.2.2.3.1.2

1.2.2.3.2.1

1.2.2.3.2.2

1.2.2.3.3.1

1.2.2.3.3.2

1.2.2.3.4.1

1.2.2.3.4.2

1.2.2.4

1.2.3.1

1.2.3.2.1

1.2.3.2.2

1.2.3.3.1.1

1.2.3.3.1.2

1.2.3.3.2.1

1.2.3.3.2.2

1.2.3.4

1.3
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Figure 6-15. Buss Tree Diagram and Data Stream
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Each segment is assigned a page whose virtual address (PVA) is used by

the EFS to retrieve the page. The IFS maintains a Page List (PL) so that it may trans-

late an IPC into the virtual address of the page containing the data identified by the IPC.

The Page List is a file whose records contain the IPC of the first item in a page and the

PVA. It is segmented like any other data, and the existence of PL entries for PL pages

permits the system to focus rapidly on the desired page through a multi-level, variable

depth, indirect addressing mechanism.

6.7.2.3 PaTe Index. The Item List does not contain enough information to allow the

IFS to interpret the data stream. It gives the fixed size (number of subnodes) of records

and statements and the size for each fixed length field; however, there are two levels of

variability which must be taken into account. The sizes of variable length of fields may

differ from one value to the next. The Item List contains only one entry for a field which

may take many values. Similarly, the size of a file, i.e., the number of records it

contains, varies from one occurrence of the file to the next. A file embedded in a

higher file occurs in each record of the higher file, but it has only one entry in the

Item List.

The page index, a string of bytes in the data segment, gives the size for

variable length fields and the number of records for files in the order of the occurrence

of the variable items in the segment. The segment index for the data stream of Figure

6-15 might be:

3 18 3 7 5 4 20 12 2 8

B Cl D1 gl c2 D2 g2 c3 D3 g3

if the fields c and g are variable length. Since the first variable item encountered in

the stream is the file B, its size is given first in the segment index. The file has three

records. The next variable length item in the stream is the field c. Its value in the first

record of file B is 18 units (bits or characters) long. The field g has a value whose length

is seven units. The remaining numbers of the segment index give the sizes of the field

_C, the file D, and the field g for their occurrences in records 2 and 3 of the file B.

6.7.3 Sample Retrieval

An example will be used to demonstrate the use of the system directories in the

retrieval of an item of data. The example is somewhat artificial because it is taken out
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of context, and it must be simplified to highlight the relationships without burdening the

reader with undue detail.

The PURCHASING item, introduced in Table 6-6, Figure 6-13, and Tables

6-7 and 6-8, will be used as a basis for the example. The directories for the item are

shown in Figure 6-16.

Suppose that a user wants to retrieve the purchase order numbers for purchase

orders issued by J. Jones against the vendor whose number is 32¢4. The request might

look like:

RETRIEVE: P.O. NO.

IF VENDOR NO. = 32¢4 AND

REQUESTOR = J. JONES

This request would be handled by the query job; however, the steps explained in this

section are common to many retrieval situations. The details are greatly simplified

and the condition is selected so that an orderly retrieval results. The general con-

ditional search capability of the system is more comprehensive than this example

implies.

6.7.3.1 Name Translation. The item names in the request must be translated to the

system identifiers, the ICC's. This is done through the Name Encoding Table (NET).

The NET is a data file like any other data in the system and it is segmented. The

names are translated to ICC's by retrieving the appropriate page of the NET and

searching its entries until a match is found on the names. This is handled by a system

service routine.

The routine first uses the Page List (PL) to discover the page of the NET to

retrieve. The PL entries for the NET are prefixed with a special identifier. The PL

of Figure 6-16 shows some entries prefixed with (N). These are NET entries. To

translate the name P.O. NO., the routine takes these steps:

(1) Match the name against the identifiers in the PL until an
identifier less than or equal to P.O. NO. is found, where
the next entry has an identifier greater than P.O. NO.
Since the entry sought falls between the identifiers, it is
in the segment identified by the first of the two identifiers.
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In the PL shown in Figure 6-16, the name P.O. NO. is found

to fall between ORDER and QUANTITY. The NET page con-
taining the entry for P. O. NO. is, therefore, the one which
begins with the entry for the name ORDER; the page address
is 49632.

(2) Retrieve the page of the NET containing'the desired entry,
and search the NET entries until a match is found. In the
NET in Figure 6-16, the entry for P.O. NO. is found in the
second page. There are two items with that name: 1.2. R. 1
and 1.3. R. 4. R. 1. Only one of these is needed. The choice

must be made by the use of qualifiers or by the context of
the problem. For example, the qualifier VENDOR could
have been used in the problem statement to indicate that
all pertinent items are subsumed by the VENDOR file.
This would dictate the selection of the ICC 1.3. R. 4. R. 1
for P.O. NO. since VENDOR has the ICC 1.3 and is a
parent of the pertinent item.

(3) Follow similar steps for the names REQUESTOR and
VENDOR NO. The consistent set of ICC's discovered for
the three names is:

P. O. NO. = 1.3. R. 4. R. 1

VENDOR NO, = 1.3.R. 1

REQUESTOR = 1.3. R. 4. R. 2

6.7.3.2 Search Strategy. The structural relationships among the items in the sample

retrieval request dictate the strategy of searching for the pertinent purchase order

numbers. The ICC of Lhe P.O. NO. field, 1.3. R. 4. R. 1, contains two record numbers.

The condition on VENDOR NO. and REQUESTOR is used to set these record numbers

to the values which meet the conditions. The search strategy used in an actual query

job is more comprehensive than the one to be discussed here.

The best strategy is to establish the record numbers which meet the conditions

at the higher level first. This narrows the number of files which must be searched at

the lower level. The condition on VENDOR NO. is the key to establishing the record

numbers at the higher level. Only those records which contain the value 32¢4 for

VENDOR NO. need be considered.

There are several ways of determining which records contain the key value.

If the field is indexed, the system maintains a subsidiary directory table that relates
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each value the field assumes to the set of record numbers containing the value. Indexing

is discussed in Paragraph 6.7.4. If the field is not indexed, the file whose record num-

bers are to be established must be searched to determine the records which contain the

key value. For the purposes of this example, assume that record number 51 is found

to contain the value 32_4 for the field VENDOR NO.

The second record number need be established only within record number 51

at the higher level. If the higher file contains 100 records, there are 100 files at the

lower level. Establishing the record number at the higher level first eliminates 99

files from consideration. Effectively, the ICC of the pertinent purchase order numbers

is translated from 1.3. R. 4. R. 1 to 1.3.51.4. R. 1, with only the record number of one

file to be established by further operations. The condition on the field REQUESTOR

establishes the record numbers in the lower level file. Again, the subsidiary directory

is used if the field is indexed, or the file is searched if it is not. In this example,

assume that record number 12 is discovered to contain the key value J. JONES for

REQUESTOR.

On each level, more than one record number might meet the condition. In

general a multidimensional array of record numbers is developed from a condition.

The array provides the appropriate record numbers for any set of desired items to be

retrieved under the condition. The retrieval steps discussed in the following paragraphs

are performed for each set of related items and for each of the record number groups

which meet the condition.

The retrieval steps will be discussed for the retrieval of the purchase order

number in the twelfth record of the Order List file which is in the fifty-first record of

the VENDOR file. The condition establishes those record numbers which convert the

logical identifier of the desired field, P.O. NO., from the ICC 1.3. R. 4. R. 1 to the IPC

1.3.51.4.12.1.

6.7.3.3 Data Page Retrieval. When the IPC of the pertinent item is known, the data

page containing that item can be retrieved through the PL. The steps discussed are

used for random retrieval of any item in the data pool or for initializing an item for

serial processing or random processing within the bounds of the item.
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The first step is to obtain the page virtual address and the range of its

data contents from the PL. The desired item has the IPC 1.3.51.4.12.1. As shown

in Figure 6-16, this IPC falls between the page identifiers 1.3.48.3 and 1.3.64.1.

The desired item is within the page addressed 34658 with other data ranging between

the bounding identifiers.

The next step is to prepare an Item List Table to act as the structure template

of the part of the data stream contained in the page. Since both boundaries of the page

are within the file whose ICC is 1.3 (the VENDOR file), the definition for that file is

sufficient to interpret the entire data stream within the data page. The page of the

Item List which contains the definition for the VENDOR file is retrieved through the

SNL. The page needed is 42879 as shown in the PL of Figure 6-16. This Item List

page is retrieved, and the definition for the VENDOR file is mapped into the Item

List Table.

The data page {34658) is retrieved and the Item List Table is initialized so

that the system can step through the data stream on the page to the desired item. This

is accomplished by stepping down the Item List Table to the entry corresponding to the

first item in the data page (1.3. R. 3 corresponding to 1.3.48.3), thereby setting

parameters which direct the system in further stepping.

6.7.3.4 Data Stream Interpretation. At this point in the example, a page of the data

stream is available with the part of the Item List needed to interpret it. The system

steps from the item 1.3.48.3 to the item 1.3.51.4.12.1, which is the desired purchase

order number. The stepping is accomplished by summing the sizes of each item pre-

ceding the desired item to develop a pointer to the precise bit location of the desired item

within the page. The sizes of fixed length fields, records, and statements are obtained

from the Item List Table. The sizes of variable length fields and files are obtained from

the page index. Sizes are accumulated and the IPC of each item is developed until the

IPC of the desired item is reached. The value for this item may be extracted for display

or processing.

6.7.4 Indexing

An important characteristic of the IFS is the ability to index selected fields.

When a field is indexed, the system maintains a subsidiary directory table relating the

values assumed by the field to the numbers of the records in which those values occur.
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The indexing feature provides a tradeoff between the speed of retrieval and the

size of storage required. When a field used in a condition is indexed, the system can

focus very rapidly on the pertinent items without searching the data stream. This is

accomplished by maintaining a Field Value Table (FVT) and an R-Value Index Table

(RVIT) which occupy additional storage space and must be updated each time a change is

made to the set of values for the field.

The payoff for indexing a field is readily apparent when the alternatives

available to the system in interpreting a condition are investigated. In the preceding

section, the retrieval example included the condition:

VENDOR NO. = 32_4

The attribute, VENDOR NO., occurs in each record of the VENDOR file. There may be

hundreds of such records. Since each record contains a subsumed file, the occurrences

of the VENDOR NO. field are widely dispersed through the data stream. If the data

stream must be searched to determine the records which meet the condition, there is

a high likelihood that a different segment retrieval will be required for each record to

be checked. This amounts to several hundred segment retrievals.

If the VENDOR NO. field is indexed, the values it assumes are stored in a

compact file with a link to the list of record numbers which contain that value. There

is a high likelihood that the first segment of the FVT retrieved will contain the desired

value. If there is only one record meeting the condition, its value is stored in the FVT

and the search is finished with one page retrieval. If there are a number of records with

the key value, the list of record numbers is maintained in the RVIT. A link in the FVT

entry for the key value points directly to the record number list. In this case, the search

is accomplished with two page retrievals. Either way, the time saving is great. The

payoff is greatest for records of files at a high level which contain embedded files, and

it improves as the number of records in the file increases.

An indexed field is tagged in the Item List with a code specifying the type of

indexing: all values, ranges, or selected values. The Item List entry for an indexed

field contains a record number which identifies the specific Field Value Table for that

field. When the system needs to determine the record numbers for the occurrences

of an indexed field which contains a given value, the record number in the Item List

entry converts the ICC of the FVT, 1.2.5. R. 4, to an IPC. The correct FVT can be
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retrieved directly, and the entry containing the given value can be found. This record

contains the record number sought, if there is only one occurrence of the field with

the given value. Otherwise, the FVT record contains a record number identifying a

specific RVIT file which contains the list of record numbers for the occurrences of the

field which contains the given value.

6.7.5 Linkage

A data pool is basically a tree structure. Each node has a single parent

node and may subsume a number of subnodeso In order to relate separate items in a

tree structure, these items must branch off from a common stem of the tree at the

point they have in common.

Figure 6-13 was a diagram of the pure tree structure for the PURCHASING

item. The fields in the VENDOR file, VENDOR NO., VENDOR NAME, and VENDOR

ADDRESS are related because they are all attributes of a vendor. The list of out-

standing purchase orders against the vendor, ORDER LIST, is also an attribute of the

vendor. The relationship among these four items is shown in the tree structure by

placing them as direct subitems of the record of the VENDOR file. The fields of the

purchase order file, ORDER, and the list of items ordered have a similar relationship.

They are all attributes that describe a purchase order, so they are defined as direct

subitems of the record of the ORDER file.

The VENDOR file and the ORDER file are two elements of purchasing infor-

mation. This relationship is shown in the tree structure by subsuming both files di-

rectly under the statement PURCHASING. However, there is another relationship be-

tween the two files which is not shown in the structure. All the attributes of a purchase

order are pertinent descriptors for the purchase orders in the list for a given vendor.

This could be shown by placing the entire set of purchase order attributes in each

record of the file ORDER LIST. This results in a gross redundancy if the existing

purchase order file is retained. If that file is eliminated, the purchase order infor-

mation is available in the VENDOR file, but it must be grouped by vendor in that part

of the tree structure.

It can be assumed that the high activity use for purchase order information

is accomplished more conveniently if the ORDER file is retained in purchase order
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number sequence as a direct subitem of the PURCHASING statement. Also, the detailed

attributes of a purchase order are needed only rarely when processing the VENDOR

file. and such information is superfluous most of the time. In such cases, a logical

link can be established to cut across separate branches of the tree structure. The link

shows the relationship between its source and target items and allows it to be exploited

while eliminating the redundancy of duplicate items and permitting the high activity data

to be stored compactly. The high activity data can be processed much more efficiently

when superfluous data is removed to a logically independent node, yet rarely used

data can be associated with the source item when it is needed.

Figure 6-17 shows the same purchasing information in a structure which

makes liberal use of links. More of the relationships among the items are shown with

less redundancy. The VENDOR file contains only the fields which describe a vendor.

The list of purchase orders against the vendor has been replaced by a link to the

records of the ORDER file. Each record of the VENDOR file is linked to the set of

records in the ORDER file which have a VENDOR NO. field equal to the VENDOR NO.

field of the VENDOR record. Logically, each VENDOR record subsumes a purchase

order file for one vendor, with the full set of descriptors for each purchase order.

Yet the VENDOR file remains a compact list of vendors' attributes and no duplication

of data is required. The ORDER file may be maintained without reference to the

VENDOR file. The set of records associated with a given vendor is automatically re-

defined by changes in the VENDOR NO. field (the link criterion) in the ORDER file.

Similar links have been established in Figure 6-17 to relate other items.

The ORDER file contains a link to a record of the LISTS file where the list of items on

that purchase order is maintained. The link criterion is the purchase order number.

Also, each item in the ITEM LIST file is linked, by item number, to a record in the

ITEM file. This makes the full item description logically available with each item on

the purchase order without cluttering the ITEM LIST file for the majority of uses.

A link connects two items, i.e., a source and a target. The source link is

an item with some characteristics of a statement. It subsumes the link criterion, a

field whose value is the key to closing the link. The target link subsumes the criterion

field in the target branch of the tree. When the values of the criterion field are equal

in the source and target links, the target link's parent item is logically subsumed by
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the source link. The source link operates like a file whose records contain the items

of the target structure for each occurrence of a match between the source and target

criterion values.

The system follows a link through a subsidiary directory, the Linkage Table.

A link item contains a record number in its Item List entry. This leads to an entry in

the Linkage Table, which contains the ICC of the matching link. Both source and

target links have entries in the Linkage Table, permitting the system to follow a link

in either direction. The target's substructure is subsumed by the source link, and the

source's superstructure subsumes the target link.

6.7.6 Data integrity

This objective can be stated in terms of the following subgoals:

(i) Data Security Checks must be provided to protect the
user against invasion of privacy by protecting his data

against unauthorized read and write operations.

(2) Data Validity Checks must be provided to protect
authorized users against collisions of data usage in
a time-shared common data base and to protect the

data base against illegitimate modification by authorized
users.

The data protection mechanism is built into the resident reentrant Service

Package which responds to all user data access and storage requests. Since these

routines perform all data access and storage operations for all users, the constraints

with regard to data usage for these routines must be inherited from their parent jobs

and not be inherent in the routines themselves.

6.7.6.1 Security Safeguard. The system of data protection employs two separate but

interacting mechanisms: security level and access/modification rights. Each data item

class is assigned a security level for access and another level for modification from one

of eight classifications. * Likewise, each user receives a clearance level which gives

him access and modification rights to all items below his level. His rights to items

classified at his level or above depend upon whether or not the item requested is on

his access-rights or modification-rights list. A table of such rights, negotiated with

• In practice, security levels will range from 0 (unrestricted) to 6 (highest restriction),

and clearance levels will range from 1 (lowest clearance) to 7 (no constraints).
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a Data Administrator, is maintained for each user. A message to a Data Adminis-

trator is prepared for each unauthorized access or modification attempt.

Two degrees of access/modification rights will be recognized. The simpler

is a right to a class of data given by item name, such as a file. A more discriminating

right is to a particular subset of records in a file, where the subset is made conditional

on a data check. An example of this is the right to specific raw data such as test re-

sults only if the data satisfies a condition, such as a given value in an identity field.

6.7.6.2 Validity Safeguard. The approach to access or modification rights solves

the problem of data integrity with regard to controlling access against unauthorized

users. However, by itself, it does not protect a data base against destruction of data

by system failure or by authorized users acting on the basis of invalid information.

This aspect of the integrity-ensurance problem is aided by an ability to recover older

editions of each page from an "archive file."

6.7.6.3 Item Lockout (Busy Bit). Comprehensive data maintenance operations which

perform structural modifications over multisegment data sets present additional con-

flict and protection requirements. In such situations, multiusers' read-write safe-

guards may not be sufficient to ensure valid operations if the data set being modified

is used independently during the maintenance operation. To provide for such pro-

tection, temporary data lockout is provided by a "busy bit" in the SNL entries for the

data being modified. This bit, set and reset at the request of a maintenance job,

effectively locks out use of any data in a class during the timc the privileged mainten-

ance job is running, thus ensuring that all data delivered to users is consistent with

the Item List.

6.7.6.4 General Procedure. There are two three-bit fields in each entry of the Item

List assigning security restriction levels to the item, one for access and one for modi-

fication. Level 0 will designate unrestricted data and level 6 will designate the most

highly restricted data. Restriction levels are assigned so as to be nondescending when

moving from an item to its parent item. Each user is assigned a clearance level which

gives him unconditional access to all data whose restriction level is below his clearance

level. Access or modification to data classified at or above the user's clearance level

is conditional upon whether the data belongs to the class of data for which the user has

specific rights (Open Class) or meets a conditional check for unique items (Field

Condition).
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A user can be assigned a class of data items or specific data items ex-

pressed as a field-value condition, for which he has explicit rights. A rights check

will be made only if a data request fails the clearance check. The usual rules of in-

clusion of items in an item class hold for the rights check. In the case of a field-value

condition, the user is permitted access only to those records containing a field whose

value is specified in the Field Condition List in his entry.

6.8 ITEM SERVICES

The concept of the virtual store of a program, properly supported by the

system, has the effect of relieving the assembly language program designer of input/

output considerations if the program is dealing with trains and cells. In the Coherent

System, however, the majority of application programs will deal with items in a

higher level language rather than with cells and trains. Users and programmers enjoy

a great advantage in dealing with logical structures of data in terms of generic item

names, so that they are independent of the problems of the layout of the data in an

address space. This not only greatly simplifies interaction with the data base, but

also allows the user or program procedure to remain invariant even though the actual

item structures and their physical mapping may change.

It would be desirable if these application programs, though dealing in items

through IFS services, could also achieve independence from explicit input or output of

items, somewhat akin to the implicit cell service available to programs dealing in

address spaces through the EFS. This capability can be realized in the Coherent Sys-

tem, through the unified design and development of the modules which support it.

6.8.1 Symbolic Coding and Implicit Services

In order to develop an insight into the concept of implicit item services, and

to understand what is entailed in the construction and operation of programs using them,

it is appropriate to recall an important distinction (and parallelism) in the typical use

of symbolic references between programs coded in assembly language and those coded

in higher level languages such as FORTRAN. Keeping this in mind will aid in drawing

analogies between implicit item services, a new concept, and implicit train services,

a concept already understood in systems where the program addresses a virtual store.

It will also lead to the identification of demands which implicit item services will make

on the design of translators for the Coherent System.
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In an assembly language program, data is referenced for processing by

knowing its location. A symbol is usually employed to denote the base location of a set

of data to be processed, and numeric references are made to locations relative to the

symbolic one. Numeric equivalents to the symbol are assigned by the assembly pro-

gram.

In a problem-oriented (e. g., FORTRAN) language program, data is refer-

enced for processing by giving it a name. The symbol for this name denotes a list of

occurrences which may be indexed, so that successive references may be made using

the symbol. Machine instructions are generated and numeric references to the data

locations area are supplied by the compiler.

In an assembly language program, the coder instructs the assembler to re-

serve the space needed to hold the data. The programmer must then code explicit

statements which cause the input of data before his processing statements reference

the address space holding it. Also, the programmer must code explicit statements

which cause output of data from such address spaces following processing.

In the problem-oriented language program, the coder instructs the compiler

on rules for the dimensions of the data, and the compiler reserves the address space.

Through rules and explicit statements given to the compiler regarding the input and

output of the data, explicit instructions are generated to cause these operations before

and after processing, respectively.

The use of symbols in making data references through the EFS is akin to the

way they are used in an assembly language program; i. e., they refer to the location of

the data. Thus, implicit train service (using a virtual store which includes all actual

system trains) is natural to processing statements of the assembly language.

The use of symbols in referencing data through the IFS is akin to the way

they are used in a higher level language program; io e., they refer to the value of the

item (not the location). Thus, implicit item service (using a virtual item array which

includes all actual data base occurrences) is natural to the processing statements of

the higher language.
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Suppose in a FORTRAN program, the following statements are coded:

5 SUM = 0

10 DO 20 I = 1,100

20 SUM = SUM + SAMPL(I)**2

25 RMS = SQRT(SUM)

Suppose that SAMPL represents data base occurrences which must be input before this

processing takes place, and RMS is a result which is to be entered into the data base.

Conventionally, the coder must provide explicit statements to perform these I/O oper-

ations. But since the coder does not deal with storage locations (even symbolic ones)

in the processing statements, it seems natural to remove storage considerations alto-

gether in a language where his references denote items, not their locations. He should

be able to consider that all items in the system are instantaneously available to his

processing statements. This goal is the parallel of the EFS implicit train service,

where the coder regards all train storage as instantaneously available to statements

referencing symbolic locations.

To realize this objective, calls to the IFS item services would not be coded

by the programmer. Nevertheless, the calls must be made (just as the Virtual Store

Manager is called by a trap unbeknown to the program).

Having received the formal item definitions supplied by the coder and having

inspected the processing statements, the compiler must be able to generate the mechan-

isms for reading and storing through IFS services. The Job Management System will

know which actual items have been bound to formal items in the job definition, so it

can then couple the system trains involved to the task and, therefore, indirectly to the

IFS.
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6.8.2 The Mechanics of Implicit Item Services

The concept of implicit item services is developed in the context of programs

whose role is to process system items maintained in the on-going data base. Of course,

there will be programs in the system which must input from terminal devices, or output

to terminal devices, but these are mostly system services or other modules which are

a part of the Coherent System. It is assumed that the great body of user programs will

be confining their attention to items already in the system. For these, the notion of a

I
n

I

I
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data base containing items which may be directly referenced in the processing state-

ments of a higher language is an important new idea. Thus, the emphasis will be on

developing this notion for use by such programs. For the other class of programs,

concerned more with logistics than computation, it is not yet clear whether implicit

item services are appropriate, or if so, what form they should take to be feasible,

due to limitations imposed by having to deal with terminal files. This will require

further study. In any case, nothing is taken away by this new concept; explicit item

services may be designed, and all traditional forms of I/O capability are still available.

For the purposes of developing this concept, therefore, the term "program"

in the ensuing presentation will include only members of that large class of programs

which are designed to process data pool items. (While, in fact, compilers will have

to recognize, in general, other kinds of I/O services, the presentation of this new

demand on the compiler will gain clarity by omitting all but the pure case of implicit

item service, )

6.8.2.1 The Compiler's Role. Just as a compiler may recognize a function name in

a statement as a requirement to set up a linkage to a subroutine, it also recognizes

formal item names and sets up the proper parameters, and coupling to the the IFS,

for the IFS may be looked upon as a subroutine, or a collection of subroutines. A re-

quirement of the item services is that they must be able to serve (or "be a part of")

more than one task. Consequently, the IFS is reentrant, and never stores into its

own train. This dictates certain design requirements:

(i) A subroutine which becomes a part of a task may refer
only to the trains known to that task; i. e., the task train
table of the parent task is the one used by the processor.
Thus, a task using IFS services must supply all data areas
within some train to which it is bound.

(2) One copy of the IFS services (call it the IFS train) is shared
by many tasks. When control is passed to the IFS, the register
used by the IFS to make references within itself must be
loaded by the parent task prior to the branch. (For different
parent tasks, the formal file used by the EFS will be different.)

Considerations (1) and (2) require that the compiler build certain records of the coupling

between the program train and the other trains which will be needed.
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If a subroutine function is needed, the train containing
it must be assigned a value of f, corresponding to a
task train table entry. This value of f would be part
of the register contents used to reference the subroutine.
The compiler makes the register assignment according
to the established standard subroutine linkage conventions.

The program itself must be identified as one which can be
made into a task (as opposed to a subroutine). Such pro-
grams will eventually require a task train table, and are
themselves compiled as formal train zero. Other programs
do not directly reference other trains, and are not con-
sidered except in the context of the parent task.

For a processing statement X = F (Y), the compiler
would do the following in the Coherent System:

For the Symbol Y. If Y does no___tappear on the left-
hand side of any other statement, e.g., Y = G (Z), it
must be an input (basis) needed by the program. The
symbol is then a Formal Item Name (abbreviated FIN)
and is identified as a basis.

For the Symbol X. If X does no__!tappear on the right-
hand side of any other statement, it must be a result
produced by the program. The symbol is then a FIN
and is identified as a result.

If either X or Y appears on both sides of assignment statements,
it may be an intermediate variable, but could conceivably be a
result item also. For example, if

Y = f(X)

Z = f(Y)

the role of Y as a candidate for implicit item services is not pre-
dictable by the compiler. The compiler could list Y as a "potential"
FIN. The job definition will make it clear to the Job Management
System if Y is to be a result item, since a binding equation will
exist for it.

If there is at least one basis or result FIN, a formal train is
assigned in order to provide coupling to the train of the IFS;
i. e., IFS implicit item services will be needed.

If the symbol is indexed, it represents an array of item
occurrences. In these cases the compiler, implicit I/O
notwithstanding, must know the dimensions of the array,
if fixed, or is aware of the case where it is variable just
in order to generate the proper instructions for stepping
through the locations containing the item values. Also it
must assign the storage to hold the values.
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To generate the proper processing instructions and again for
storage assignment purposes, the compiler must know the

format of the item values (e. g., floating point, fixed point
of a certain length, etc.).

Such information is also needed to set up the mechanisms

for implicit item services. The point is that nothing new
is needed in the way of language specification to achieve

this, as current languages already provide for implicit or
explicit specification of these particular item attributes•

For each variable item array, a formal train is assigned
to hold the data. Its size is limited only by the virtual
addressing capability of the hardware within a train. The
compiler will associate the formal train with the Formal

Item Name (FIN) symbol and will indicate whether it is

basis, scratch, or result. This will be needed by the
Task Initiator and/or Task Terminator modules of the
Task Manager•

For all fixed size arrays, one formal scratch train is

assigned within which virtual addresses are assigned by
the compiler to hold the data. One such virtual address

assignment is needed for each symbol representing data,
whether basis, scratch, or result. A scratch area is also

provided for use by the IFS. This can probably be assigned
as the remaining virtual address space in this formal
scratch train.

For each basis FIN and result FIN, a formal basis or
result train is assigned.

For the sample program presented earlier .. o

5

10

20

25

SUM = 0

DO 20 I = 1,100

SUM = SUM + SAMPL(1)**2

RMS = SQRT(SUM)

•.. the compiler generates the program, and a program

definition. The program definition contains a dictionary
of formal item names, in this case:

Base Address in

FIN Sense Format Array Size Scratch Train

SAMPL Basis E(Exponential) 100 L(SAMPL)
RMS Result E 1 L(RMS)

It also carries virtual store requirements such as the highest
location referenced within itself; also the skeleton of the task

train table, reflecting formal train assignments, e. g.,
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FTN(f) Sense

0 Execution
1 Execution
2 Execution

3 Scratch
4 Basis
5 Result

(Comments)

(For train to hold this program)
(For linkage to IFS)
(For linkage to external SORT
program)
(For arrays and use by IFS)
(Will be bound to actual system train)
(Will be bound to actual system train)

The basis train 4 and result train 5 will not be referenced

directly by this program, but by the IFS, which will use
the task train table created for this program at execution
time.

Other information is carried in the program definition which
enables the binding to other programs to be established when
this program is entered into the Coherent System's repertoire
of programs which may be used as tasks, that is, the linkage
information needed to use SQRT and the IFS.

6.8.2.2 From Program Compilation to Running Task. In order to properly expose

the mechanics of implicit item services, the steps leading up to the execution of a

program in a particular job and data context should be reviewed. To do this, a particular

data context and job context will be postulated for the program sample used previously,

and the Coherent System will be viewed from the inside as the presentation is developed.

Postulate that a data base has been built up through System Support Data

Services. Each user item has been assigned to a train by the IFS. The structure of

each user item is set by an Item Definition Job, and data is entered through the Item

Entry Job. All of these items are addressable as trains by programs using EFS im-

plicit train services.

Suppose one array contains records holding collections of statistical error

samples. Each record holds an imbedded file of 100 samples, and two simple items

which are the root-mean-squares of the 100 values of each of the fields in each sample.

This structure is illustrated in Figure 6-18. Notice that XERROR and YERROR are

carried as integers, and that XRMS and YRMS are in exponential format. Let us

postulate that the programs which enter the error samples into these arrays are al-

ready designed, but the function of producing the values from the samples and storing

them into the Quality Summary has yet to be programmed.
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!

Quality Control

4

------/D5; PART NUM

-----¢D6; TEST DATE

Quality Summary )

1 _--_E4; XRMS

2 _-------/E4; YRMS

_t Error List

I
I

L 1 I4; XERROR
100 2 I4; YERROR

Figure 6-18. Quality Control File

Now this code is written and compiled, as described in the previous section.

The object data of the compilation may now be submitted as input data to a

Program Entry Job, one of the Repertoire Expansion System Services. In this job,

the program is defined to the system by a user-assigned name. The user also specifies

the train name of the addressable train to contain the program. If it is a main program

(capable of being named as a task in a job) rather than a subroutine, a new train must

be defined. In this case the default option will be to assign it the same name as the

program.

In the example, the name of the program (and of its train) will be RMSER.

The input to the Program Entry job is the object program code and the program definition
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(collectively called the "program data"), and the name "RMSER." In the example,

this step is illustrated by the flow in Figure 6-19. The user at this point can think of

the system as containing the function

RMSER(SAMPL) = RMS.

Now RMSER is known to the Job Management System as a program, and it

may be used as part of a job. One job needed by the user is one which can provide the

RMS values for newly acquired sets of XERROR and YERROR values.

If this were a "one-shot" operation, our next step could be the Job Request

itself. But most jobs, including this one, will be functions which are desirable to

repeat as new sets of data are available. The next step in building the user's reper-

toire is to define a job, in which RMSER is identified as a task bound to the actual

items in the data base, as postulated above. The program RMSER will be used to

update both XRMS and YRMS in specified records of the Quality Control array.

The input to the Job Definition System Service Job consists of the Job Name,

UPDATE XYRMS, the programs to be executed in the job, and for each program, the

binding equations which make the programs into tasks.

#DF JOB UPDATE XYRMS

RMSER (XERROR where Part Num = 12345) = XRMS where Part Num = 12345

RMSER (YERROR where Part Num = 12345) = YRMS where Part Num = 12345

This definition is entered into the Coherent System's repertoire of jobs, to be recalled

when a Job Request is issued which calls for UPDATE XYRMS (Figure 6-20). Other

job definitions may call for the same program to operate with other data base files of

similar structure, or other records in this file. In this example, the system is now

prepared to respond to a user's Job Request to run UPDATE XYRMS.

The Job Request is a statement to the Job Management System to execute

such-and-such a job in the repertoire. The foregoing System Services each had job

names and were called with a Job Request. Now UPDATE XYRMS has achieved the
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same status. The request EXECUTE UPDATE XYRMS now causes the Job Management

System to take many steps:

(1) UPDATE XYRMS is found to be in the Coherent System's
job repertoire, and the job definition is placed in the Task

List for the Scheduler. (To keep the presentation simple,
such considerations as validating the user's identity,
showing the priority or other scheduling criteria, are

omitted as not central to the point here. )

(2) When the time comes for Task 1 of the job to be started,

the program name is used to recall the program definition

which includes the Task Train Table (TTT) skeleton, a
dictionary, and symbols used for external linkage (see
Figure 6-20).

(3) Now this, combined with the binding equations, allows the

Task Manager to construct the Page Tables and the Task

Train Table needed to execute this task (Figure 6-21).
The Task Specification will be retained by the Task
Manager until the end of the job.

(4) Now task initiation and initialization may take place.

(The best implementation approach for this function
requires further analysis. For this example, the

code performing this function is called the Task Initiator,
although it will perhaps be generated by the compiler as

the first executable portion of the program.) In creating
the Task Train Table, it was located in primary memory

at h _'0. The Task Manager now loads h into the TTT
Base Register, and branches to the Task Initiator. The
Task Initiator links to the IFS module which will build

the basis array for the task.

(5) From the dictionary for RMSER, the basis array SAMPL
is the one to be constructed. The binding equation for this
task says that SAMPL is really XERROR where PART NUM =

12345. From the dictionary, it is seen that the array will
be provided at relative address L (SAMPL) within the train
f = 3, and that 100 field values required are to be in E =

exponential format.

The IFS, through its Name Encoding Table, identifies

item XERROR with the structural position (ICC) 1. R. 4. R. 1
in the Quality Control file (see Figure 6-19). PART NUM,
in position 1. R. 1 will be examined for each R until the value

12345 is found, say in record r. Now the value for XERROR
is retrieved from 1. R. 4. R. 1 for R=I, 2 ..... 100 and placed
in a scratch area in the scratch train f = 3 provided for IFS
use. The virtual addresses needed for these retrievals are

maintained in the Page List of the IFS which holds the Quality
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(6)

Control file. The IFS, using these virtual addresses, was
able to make direct references to the train because it was

bound to the task, and is entry f = 4 in the Task Train Table;

that is, the Page List for the required Quality Control record
was built at the start of the task by the Task Manager.

Now, the values retrieved are integers and are required to
be in exponential format. These are now converted and

stored beginning at relative location L (SAMPL) in the
scratch train supplied.

The RMSER program was constructed by the compiler to
make references to its basis array at L (SAMPL) in scratch
train f = 3. Now the code may be executed. It calculates the

root-mean-square of the 100 values just supplied, and stores
the result (in exponential format) at L(RMS) in scratch train
f=3.

6.8.3 Explicit Item Services

Data services can also be offered to the programmer through a Data Service

Language (DSL). The requesting program may be written in any language that can

provide a service call with literal parameters. The parameters of the service request

will typically be the following:

(1) Service command (including condition, if any)

(2) Service window or formal file

(3) Error control word.

These explicit item services fall in two general categories: positioning and

copying. Two modes, sequential and random, applyto either category. The positioning

commands position a pointer in the formal file (and item bound to it) ; the copying command

reads data into (or writes data from) the service window. The sequential mode operates rela-

tive to the current pointer position, and the random mode positions the pointer to an absolute

element in an array (given as a record number).

The item service commands are listed below:

(1) Step < file _ (< n>);

This command steps the pointer on the formal file
relative to its current position. Direction of step

is indicated by sign of n (with a default value of +1).
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(2) Step Absolute <file> (<n > );

Moves pointer to record n of file. Default value of
nis 1. The value of n may be end.

(3) Write < item > ;

Writes the formal item to the actual item bound to it.

Pointer is moved one step.

(4) Read <item>;

Reads the actual item bound to the formal item into the

window. The pointer is moved one step.
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SECTION VII. USER LANGUAGES AND SYSTEM SUPPORT JOBS

7.1 LANGUAGE SPECIFICATION AND PROCESSING

The specification and processing of system languages appear in many contexts

within the Coherent System (or any system which manages a large on-going data base for

interactive users). Within such a system there will be at least the following types of

system languages:

(I) Job request, or command language

(2) Data item definition language

(3) Data item input language

(4) Job description language

(5) Data service request language

(6) On-line (interpretive) computational languages

(7) Compiler languages

(8) Macro-assembler language.

R should be possible to perform a large part of the input stream scanning, analysis, and

interpretation of these languages with basically the same, or similar, syntax-directed
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processors. In this section, a designer-oriented language capable of specifying the

syntax and semantics of system languages will be discussed. In the remainder of the

section it will be used to specify the syntax of languages, in Items (1) through (4), for

the Coherent System. The form of language specification to be discussed is called action

graphs.

Action graphs are similar to a transition diagram of the syntax of a language.

The symbols used in action graphs are shown in Figure 7-1. As an example, an action

graph for a simplified "assignment statement" compiler is shown in Figure 7-2. A

detailed description of action graphs and a processor for action graphs is given in

Appendix B, a paper entitled "inscan: A syntax-Directed Language Processor."

7.2 JOB DEFINITION AND COMMAND LANGUAGES

7.2.1 Conditions

The basic objective of the job language in the Coherent System is to enable

the user to run a predefined job with a minimal amount of information required at job

request time. The approach taken is to permit a prestored job description to contain a

specification of the structure of a job in terms of subjobs and tasks.

There are two basic approaches to job input parameter specification in a system

with an on-going data base and an IFS. The choice hinges on the question of how quali-

fication of data base items should be accomplished. The first approach requires that the

user create a data base item for each input parameter by naming an existing item or

explicitly running a Conditional Search and Extract Job which creates the item in the

data base. The second approach, and the one adopted here, is to permit an input

argument to be a data base name which may be qualified by a conditional statement. This

approach implies that Conditional Search and Extract is not a user job but rather a system

act which is performed whenever a qualifier (WHERE-clause) is encountered in an

argument list. The advantage of this approach is that jobs that are to operate on a subset

of an item (a frequent need) can be requested in a single statement, and the awkward

situation of being required to handle every condition as a parameter is avoided completely.

A "query," in this context, is simply a display or print job _4th a qualified input argument.

Another major advantage of this approach is that the conditional search operation need not

be considered as a separate task which must run to completion before a subsequent task

is initiated, but rather as a function which may be executed dynamically when the task

program references its input parameter.
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GRAPH NAME: r IS DEFINED BY PATH

SCAN: READ INPUT SYMBOL AND MATCH cl

CHOICE: TRY ALTERNATIVES 1 AND 2

SUBGRAPH: EXECUTE GRAPH a AND RETURN

RECURSE: EXECUTE THIS GRAPH RECURSIVELY

AND RETURN

EXTERNAL ACTION: DO SUBROUTINE Tr

AND RETURN

INTERNAL ACTION: DO OPERATIONS

END: RETURN TO PARENT GRAPH

Figure 7-1. Action Graph Symbols
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Examples of requests using this scheme might be:

(1) # Print (Resources Where Experiment = Surveyor)

or (2) # Delete (Mission Record Where Date <1968)

Using the first scheme, job (1) would require the sequence:

# Extract (Resources, Experiment = Surveyor) = Temp

# Print (Temp)

and job (2) would require

# Conditional Delete (Mission Record, Date < 1968).

It is also clear that the first approach is a special case of the second (the

adopted approach), in that jobs with explicit specification of conditional tasks in lieu of

qualified arguments can also be executed. The second approach is also more flexible

in that all possible points that may potentially require Extract need not be prespecified

in the job description. This has the effect of reducing the inventory of unique job

descriptions.

7.2.2 Job Constraints

The question of scope or power of the job request language must be answered

independently of the preceding question of argument qualification. To answer this

question the motives and requirements of the job request language must be reviewed.

The job request (or command) language can conceivably occupy any part of the

spectrum from simply naming a single program (and arguments) to be executed, to

specifying a general procedure in some macro-oriented language such as TRAC* or

GPM. ** The "single program" end of the spectrum provides the advantage of simplicity

in the binding and job management functions but the disadvantage of limited flexibility

from the user's point of view -- he requires a program change in the total job program

(or a different program) for each change in function. Programs tend to be large (although

they still may be modular) and oriented to a single job goal. The "general macro-

language" end of the spectrum offers the advantage of flexibility from the user's point of

view. Without "programming" in a procedural language he can freely manipulate

*C. N. Mooers: TRAC -- A Procedure Describing Language for the Reactive Type-
writer, Comm ACM March, 1966.

**C. Strachey: A General Purpose Macrogenerator, Computer Journal, October, 1965.
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goal-oriented macros which perform operations at any desired level of complexity,

including conditional operations, nested operations, iterative operations, and loop control.

The disadvantage of this degree of generality is that it introduces a high degree of inter-

pretive operation and the difficulty of binding parameters of macros which may appear in

loops.

The approach taken is to permit multitask jobs but no iteration (or loop control)

over tasks (at the job level). This permits smaller task modules which perform simpler

job steps to be programmed and used flexibly in job structures but avoids the complexities

of loop control in the Job Manager. It does provide the possibility of parallel processing

at the job level (that is, having more than one task of a job active at one time), since the

data prerequisites of each task are known at job request time.

One additional point may be made. To permit nesting of jobs, it is necessary

that the result of every nested job be a single data item. For example, in order that the

argument u of a job A(u, v) =wbe specified as aresult z of job B (x, y) = z by using the

notation

(1) A (B (x, y), v) = w,

it is necessary that the result of B(x, y) be a single item. If it is more (or less) than a

single item, then the expression (1) is ambiguous. Although this natural, and eompaet,

notation should be permitted for the large class of jobs that may meet this constraint,

there is an important class of programs that does not. In order to permit these programs

to be used in jobs (or as jobs), a structure more general than the familiar form (1) will

be defined for jobs. Any partial ordered (non-looping) structure of jobs and tasks will be

permitted to be defined as a job. (Of course, constraints due to compatibility of param-

eter structures and item types must be maintained. )

The user should be able to define new programs to the system and to define new

jobs (commands) in terms of previously existing jobs and programs. These definitions

could be formal structures stored by the JMS in the data pool using IFS services. They

then would be available to the JMS at job run time to direct parameter binding and task

linkage functions.

The definition of new programs and jobs (and new data items) is accomplished

by using standard system jobs and suitable descriptive languages provided for those

purposes. A program description consists of the name of the program and the name and
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datadefinition of its input andoutputparameters. A job definition, in addition, contains
a structural description in terms of a list of componenttasks andtheir parameters. An
exampleof the type of job structure that canbedefinedis given in Figure 7-3. The
forma! description of the job J shownin the figure may bewritten as follows:

# DF J(1, 2)=(3, 4, 5)

A (1, 'p') =(3, '1, *2)
B(*2, #, 2) =('3, *4)
C (*1, *3) = (4, "5)

D(*3, *4, q) =('6, #)

E (*5, *6) = 5

where # represents a null input or unused output; "1, *2, *3, *4, *5, and *6 are dummy

(bound) variables; and A through E are previously defined jobs. Of course, in an actual

situation, symbolic names which serve as semantic cues should be used for job names

and parameters.

It is important to note that since the data management system contains struc-

tural descriptions of program and job parameters as well as data base items, extensive

checking and automatic restructuring operations can be performed by the system. This

is a key capability in extending the useful life of programs while data structures are

modified and improved.

The job run request for the above job would be:

# J (a, b) = (c, d, e);

where a to e are actual values for the formal job parameters.

The special case in which all but (possibly) the last job of a structure has a

single item output is illustrated in Figure 7-4. In this case the job definition need not

have been made before the run request. In that case the run request would be

# J (#H(#F(1, 'p'), #G (, 2)), #I (#G(, 2), q)) = (3, 4, );

The preceding form is called a command. Formal specification of a command is given in

Figure 7-5.
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Figure 7-3. A Typical Job Structure
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A *4

_ 3

DF K (1, 2) = (3, 4):

F (1, 'p') = "1

G(,2) = *2

H (*1, *2) = *3

I (*2, q) = *4

J (*3, *4) = (3, 4,);

Figure 7-4. A Restricted Job Structure
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7.3 ITEM DEFINITION LANGUAGE

The Item Definition Language is used by a console job initiator (such as the

data administrator} for entering a new data item definition into the data base directory,

or modifying an existing definition. It is also used by the programmer in defining the

logical structure of formal items in his program, which will be the subject of Internal

File System services. The formal item definitions are part of the program description.

The proper entries are made in system tables by the Item Definition and Program Entry

system support jobs.

The Item Definition Language must be able to conveniently define the data

structures which the IFS is able to manage. These structures, which can be represented

by indented tree diagrams as discussed in Section VI, consist of arrays, statements,

and fields. As discussed in Paragraph 6.2, the tree diagram can be represented either

in indented outline form or as a linear parenthesized string. The convention shown in

Figure 6-1 can be expanded to include the Variable Structure, Coded Field, and Hier-

archic Field as discussed in Paragraph 6.5. The Item Definition Language is summarized

in Table 7-1. For simple structures, such as formal program parameters, the item

image form will be most convenient (and probably preferred by the programmer). For

large complex structures, however, the linear parenthetic form may not be easily read

and may lead to errors. The indented outline form will probably be preferred by most

nonprogramming users who deal with common data base structures.
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TABLE 7-1. DATA DEFINITION LANGUAGES

Item Type Indented Outline Item Image

Statement

Array (File)

Array Element

(Record)

Variable Structure

Link Statement

Binary Field

Octal Field

Integer Field

Decimal Field

Exponential Field

Alphanumeric Field

Text Field

Coded Field

Hierarchy Field

S; < name-_

F <size>

R; < name>

V; < name>

L; <name>

B < size>

O < size> ;

I <size> ;

D < size> ;

E <size> ;

A < size> ;

T < size> ;

C < size> ;

{ value list}

H

; <name>

< target name>

; <name>

<name>

<name>

<name >

<name>

<name>

<name>

<name>

<levels> , <values>;

< name> l<value structure>

( <name>

E <size>

( <name>

(V; <name>

(L; <name>

/B < size>

/O <size>

/I < size>

/D <size>

/E <size> ;

/A < size> ;

/T < size> ;

/C < size> ;

{value list}

<levels>

< name >

/H

..,)

)

...) (target_
\ name /

; <name >

; <name>

; <name>

; <name>

<name>

< name>

<name>

<name >

<values _;

{value structure}
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SECTION VIII. CONCLUSIONS

This report has examined the data processing needs of NASA post-Apollo

missions and related those needs to features and capabilities required in system soft-

ware. It has concentrated on the job and data management aspects of the software and

has identified and developed three areas of concern:

(1) The Job Management System and its interface with the
interactive user through a goal-oriented command
language

(2) The Internal File System and its interface with the pro-
cedural language programmer with implicit item services

(3) The External File System and its interface with the
machine-oriented language programmer with implicit cell
services.

The orientation (and possible bias) of this work has been toward the concept

that a dominant data processing problem of future space missions will be the manage-

ment of a large centralized data base concerned with many aspects of the space mission

and shared, perhaps for different purposes, by many different users. This view results

from the likelihood that storage equipment permitting rapid access (milliseconds) to a

8-1
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large amount of data (10 9 bits) will be available in the next decade, and that techniques

for effectively time-sharing a large computing complex among independent users are

rapidly being developed.

Examination of a number of current and proposed systems disclosed that many

of the desirable features of such a system could be found in embryonic form in several

time-sharing computers, monitors, file systems, and generalized data management

systems. It was also clear, however, that they had not been brought together to form

a coherent user-oriented system in any one instance. Starting with this basis, a

Coherent System concept has been developed. Using techniques within reach of today's

technology, this system provides a new measure of data management capability, pro-

gram effectiveness, and programming ease.

The Job Management System specified gives the goal-oriented user the ability

to combine existing programs and jobs, prebind any of their parameters, and use that

structure as a single operator, executable when the appropriate command is given, con-

trol action taken, or data and temporal prerequisites are satisfied. Any job parameters

may be specified as data base values which meet a given logical condition. In effect,

this embeds a general query capability within the command language.

The Internal File System allows the user to define, build, and maintain logical

data item structures of wide generality in an on-going system data pool. Access to this

data can be effectively controlled by means of user lists, security classification, and

"need-to-know" conditions. Item structures exist independently of the programs which

use them and may be modified in structure and content without making the programs

which use them obsolete. Implicit item services allow the programmer to reference

items in formal structures as if the actual items to which they are bound are in the im-

mediate processing environment of the program at execute time. That is, one can write

procedural language programs which declare formal items but are not concerned with

the binding process, data location, or the logistics of data movement.

The External File System maps the items of the system data pool into a large

virtual address space and thence to tracks in the real multilevel storage system. It

allows machine-oriented programmers to write programs in a symbolic assembly lan-

guage which treats the program and any formal files which it references as symbolically

8-2



addressabletrains of cells in independentaddressspaces. Thesemay beboundto
permanentdatabasetrains or, in the caseof sequentiallyaccessedterminal trains,
to input/output devices.

The result of this work is a functionaldescription of aprototype Coherent
System. Thethree major system elementsmentionedpreviously are described, along
with someSystemSupportFunctionsfor definingnewjobs anddatastructures. There
are several areas (notably, SystemSupportFunctionsfor indexingandconditional
item retrieval, terminal train services, andimplicit item services) which deserve
further development. Sincethe topics describedare, in almost all aspects, innovative
andthe technologyitself is young, it is strongly recommendedthat a systemdesign
bedetailed andthat at least apartial experimentalcapability be implementedwithin a
current hardware/software environment.
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TIME--SHARED DATA MANAGEMENT SYSTEM (TDMS)

1. INTRODUC TION

1.1 General Background and Implementation Status

TDMS (Time-Shared Data Management System) is a user-oriented internal

file system which is being developed by SDC. Designed to operate under the control

of the SDC time-sharing executive on the IBM System/360, Models 50 and 65, it consists

of a set of file command interpreters that permit a non-programmer to define, store,

process, and output data according to his requirements. The system allows the user

to define and process a broad range of data structures. It does not interface with pro-

gramming languages or other systems.

TDMS is an outgrowth of TSS-LUCID, an experimental system that has been

operational at SDC on the Q-32 computer since 1964. The first model of TDMS is

expected to be operational in 1968.
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1.2 Objectives

The overall design goals of TDMS, as stated by Bleier, 1" are as follows:

(1) a reasonably complete set of general-purpose data manage-
ment capabilities

(2) a language that is oriented toward the non-programming
user

(3) a capability to define and handle hierarchically structured
data

(4) system tables and directories that will provide rapid
response to queries

(5) an ability to obtain rapid solutions to a wide variety of
users' problems.

1.3 Definitions

The concepts of TDMS (and all systems to be evaluated in this study) will be

discussed in terms of a common language. Although use of a common language will

facilitate comparison of these systems, one danger associated with this approach is

that the concepts of the system designers may not be conveyed with complete accuracy

in the standard language used. When this danger is greater than usual, an effort will

be made to point out this difficulty; however, all responsibility for warped connotation

or inaccurate interpretation will, of course, be the responsibility of the writer.

In the definitions which follow, the TDMS term is underlined.

• A data base is a file which is not embedded in any higher
user-defined structure.

• A logical entry is a record of the data base.

• A data base description is a file description.

• A component is an item.

• An element is a field.

*Superscript numbers indicate references in the bibliography.
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A repeating group is a record of an embedded file. (The
fact that there is no term for referring to the embedded
file as an aggregate leads to conceptual and logical dif-
ficulties, which will be discussed.)

A set is a statement with numbered occurrences but no
generic name in DMS.

A file in TDMS is made up of records which are composed of a single

set and some number of embedded files. Since each embedded file, in turn, is

composed of records with a single set plus possibly other embedded files, a record

at the highest {data base) level can be viewed as a sequence of sets, the first at level

0 and the following ones at greater depths.

. SYSTEM DESCRIPTION

2.1 Operations

TDMS users, who are management oriented, can define data items and

their relationships (within constraints that will be discussed) and perform operations

with the system in order to load, update, query_ and display data. The TDMS system

components, together with the way they relate to system data, are shown in the boxes

of Figure 1. The functions of these components are given in the following list:

(1) DEFINE. Allows the user to create a new file description
or alter an existing one with inputs prestored or provided
interactively, on-line.

(2) LOAD. Accepts all types of numeric and non-numeric data,
either batched or interactively, from a console; performs
legality checks; permits error correction on-line; and in-
cludes the capability to convert pre-existing data values
to the required TDMS format.

(3) QUERY. Allows the user to request single values, multi-
ple values, or entire entries, printed on-line in a standard
tabular format; and provides full arithmetic capabilities,
plus operators such as sum, minimum, maximum, count,
average, and standard deviation.

(4) UPDATE. Allows changing of values and adding or de-
leting either single values or entire entries.

(5) DISPLAY. Allows the user to define, generate, manip-
ulate, save, and recall a variety of display formats.

-3-
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_xternal )
Data

File

Describe

\ /

Load

QueryDisplay Produce I
Figure 1. TDMS System Components
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(6) COMPOSE/PRODUCE. Allows the user to specify report
format and content in a user-oriented language; provides
arithmetic, ordering, formatting, and tutorial capabilities;
and produces reports on the interactive console or line
printer.

(7)

2.2 Structures

MAINTAIN. Provides for merging, subsetting, extract-
ing, ordering, restructuring, and updating files; and accepts
one or two different files, an on-line description of the
desired output data, rules for selection of data, and the
transformations that are required.

Two types of data structures are pertinent when describing TDMS (or any

other internal file system). The first is the item structure, the user-determined

logical structure that defines an item in some system-determined descriptive language.

The second is the system-determined data structure for mapping the user item defin-

itions into system definition tables, and the data into the data base and directories.

2.2.1 User-Determined Item Structure

2.2.1.1 General Structural Scheme and Constraints. The highest level item which

a TDMS user may define is a file; in TDMS the file is called the user's data base. The

structure required for each file is shown in Figure 2. The records of the TDMS data

base are called logical entries and consist of a single statement, called a set, which

must contain all the fields (called elements) at this level of the structure. The state-

ment is not named in TDMS but is referred to by referencing the ordinal item number

(component ID) of the record/file to which it belongs. Following the statement in the

TDMS record may be some fixed number of embedded files called repeating groups.

The structure of each repeating group follows the pattern of a data base file; that is,

it is made up of records having a single statement (set) and some number of embedded

files (repeating groups), recursively. The lowest level record in any structure does

not contain embedded files.

2.2.1.2 User Data Definition Language. The user data definition language is based

on a list of items (called components in TDMS) in which the record and statement level

are omitted. The list may be written in an indented format if desired, but this is not

necessary since the parent file of each item must be identified.

-5-
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A TDMS Data Base (File)

An arbitrary number of
logical entries

A single set

Some fixed
number
of
elements

Some fixed number

of repeating groups.
Each repeating
group may have
the structure of a
TDMS Data File.

Figure 2. A TDMS Data Base Structure

In order to illustrate best the characteristics of the data definition (and

other TDMS operations}, a typical example will be given and developed.*

The example chosen is a personnel file. Each record contains the employee's

name, and data about his jobs and children. A structural diagram of this data is

given in Figure 3. The mode representing the statement (set) in each record has been

omitted since it is not given in the data definition.

*This example is used by SDC in many of its reports and system documentation, e.g.,
RE Bleier: Treating Hierarchical Data Structures in the SDC Data Management Sys-
tem (TDMS}, Proc ACM Conference, 1967.
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Figure S. Personnel History File
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The data structure shown in Figure 3 is defined using the TDMS DE FINE

program. The user enters a description (typically on-line), as shown in Figure 4.

This description defines the components and interrelations of components in the data

base. Note that there is only one EMPLOYEE in each entry, but he may have had one

or more jobs and one or more children.

DATA BASE NAME IS: PERSONNEL HISTORY

TERMINATOR IS: END

1 EMPLOYEE (NAME)

2 JOBS (REPEATING GROUP)

3 JOB CLASS (NAME IN JOBS) VALUES ARE EXEMPT, NON EXEMPT

4 JOB HISTORY (RG IN 2)

5 JOB TITLE (NAME IN 4)

6 POSITION (NAME IN 4)

7 SALARY HISTORY (RG IN 4)

8 SALARY (NUMBER IN 7) VALUES ARE 400 ... 2000

9 CHILDREN (RG)

10 CHILD (NAME IN 9)

11 DISEASE HISTORY (RG IN 9)

12 DISEASE (NAME IN 11)

TERM

Figure 4° TDMS Define Example
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Indentation is used in this example to bring out the TDMS concept of level. In-

dentation is not syntactic in the language as defined, but is used in the example as a

logical signal for transition from one level to another. (Users may indent or not as

they see fit. ) In the example, components 1, 2, and 9 are said to be at level zero;

the order in which their values are input is of no consequence, nor do their values

depend upon the existence of other data in the logical entry. Components 10 and 11 at

level 1, and 12 at level 2, are in the repeating group "CHILDREN"; the order of input

to the data base for these elements is very important. For example, in the logical

entry which has data about three children named Mary, Jim, and Bill, the name Bill

must not be associated with Mary's diseases.

Specifications of the hierarchical nature of these data is accomplished by naming

the beginning of a hierarchical structure (repeating group) and then specifying any

components that belong to that group. It is stated, for example, that component 4

(JOB HISTORY) is a repeating group in component 2 (JOBS) and component 5 (JOB

TITLE) is a name in component 4 (JOB HISTORY).

2.2.1.3 Loading the Data Base. Examples of data configured for input to the TDMS

LOAD program are shown in Figure 5. It is assumed that each line is a card image

or a line on the teletype. Again, indentation is not syntactic; it is merely logical.

The order of component values must be maintained, but the user may pack as

much information on a line as he wants. Data may be omitted. For example, in the

first occurrence of component 4 (JOB HISTORY), if JOB TITLE were missing, the

line would read:

4) , PROGRAMMER

The component numbers chosen at define time identify the data fields that follow.

The next occurrence of the form "space, number, close parenthesis, space" signifies

the end of the previous field and the beginning of the next field. Within repeating

groups, the input fields may be sequenced and separated by commas, or given field

numbers.

2.2.2 System-Determined Data Structures. TDMS processes the file definition to

produce entries in a set of system tables which define the item names and structure

of the file. When the file is loaded, entries with field values will be established in

-9-
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1) JONES A. V.

2) NON EXEMPT

4) PROGRAMMER TRAINEE, PROGRAMMER

7) 450 7) 500

4) PROGRAMMER, PROJECT HEAD

7) 550 7) 600 7) 650

2) EXEMPT

4) PROGRAMMER ANALYST, PROJECT HEAD

7) 650 7) 700 7) 750

4) PROGRAMMER ANALYST SR, SECTION HEAD

7) 800 7) 850 7) 900

4) COMPUTER SYSTEMS SPEC, GROUP HEAD

7) 900 7) 950 7) 1000

9) MARY

11) MUMPS 11) MEASLES

9) BILL

11) WHOOPING COUGH 11) CHICKEN POX

9) JIM

11) MUMPS 11) MEASLES 11) CHICKEN POX

END

Figure 5. Example of Numbered and Sequenced Fields Data Set
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a data table. Index type data which allows rapid response to queries and retrieval of

the data will also be established. The basic TDMS data retrieval strategy depends

upon a complete indexing of all data values in the file so that each data value is cross-

indexed to all statements (set occurrences) which contain that value. This conversion

goes through severalstages (value to set number to location) that will be described.

The logical structure of the internal tables of TDMS is shown in Figure 6.

The TDMS data retrieval strategy follows from the structure of these tables and their

relationships.

The Item Definition table has an entry for each component (item) in compo-

nent number order. The data stored in this table for each item gives code type (for

fields), Repeating Group Identifier (RGID) (for embedded items), level number, and

value of data in the data file. For each field there is a link to a table of legality data;

an index (concordance) of each value in the field lists the set number (based on order-

ing all statements in a tree-scan order) for all sets in which the values occur. This

set number is used as a link to two tables: (1) the Data File (Data Base) itself, which

gives values for all fields in the set, and (2) the table called CFIND, which gives the

RGID and relative "UP" and "DOWN" links to related sets.

The definition and interpretation of UP and DOWN links in TDMS are given

in Figure 7. This interpretation is based on the report by Bleier I and is somewhat at

variance with that given by Ziehe 7 and earlier TDMS documentation.

The UP and DOWN pointers in CFIND are relative pointers from each set

entry to a related (not necessarily distinct) set. The DOWN pointer from the highest

level set in each record points to the corresponding set in the next record. The DOWN

pointer in each embedded set, however, points to the immediate set of which it is part

(immediate parent).

The UP pointer from the highest level set in each record points to itself.

The UP pointer from each embedded set points to the next highest numbered set at its

own level. The UP pointer from the highest numbered set at each level (below the

top) points to itself.
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Figure 6. TDMS Table Structure
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2.3 Query Language I

TDMS has a well-developed query language which, except for a logical error

to be discussed in Paragraph 3.3, provides for retrieval of arbitrary data subject to a

general boolean logical condition. Using the data definition and data file example

given in Paragraph 2.1, the following queries can be posed in TDMS:

(1) Print Job Title where Position -- Project Head

(2) Print Job Title where Job Class ha___sPosition = Project Head.

The first query is in the form: PRINT field WHERE condition;
the second is in the form: PRINT field WHERE scope modi-
fier HAS condition.

The interpretation of these queries is:

(1) Print the value of job title in every job history record in
which position is Project Head.

(2) Print the job title in every job history record of the job
history file if the job history file contains a position of
Project Head in any record.

Thus, the where clause establishes a condition and implies
the scope of that condition. If there is no scope modifier in
the form "(-.field name_ HAS" after the 'WHERE," then the
condition must be satisfied individually in each record at
the level established by the items named in the condition
which follows "WHERE." If "HAS" is used, then the condi-
tion is considered satisfied if any record at the level below
the field named in the HAS-clause satisfies the logical con-
dition in the WHERE-clause. Other permissible queries
are as follows:

(3) Print salary where position ha___ssalary eq. 701... 799

(4) Print salary where job title has every salary gr 600.

In Item (3) "HAS" carries the meaning "has any."
Any job with a salary within the given range will qualify.

3. EVA LUA TION

3.1 Structure

TDMS appears to be a system that a non-programmer can easily use to de-

fine, update, and query a structured data file. A language is provided to evoke system-

defined actions which define new data elements, load an initial file, maintain it,
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respond to queries, and produce reports. It appears, however, that there is no easy

way for a programmer to interface with TDMS and provide for non-standard actions

in these areas; that is, there is no discussion of the programmer as a user of the

system, and no direct data access services offered to the programmer as a user. As

a consequence of this lack of interaction of TDMS with a programming system, it

appears that batch-oriented or non-standard data processing functions will have to be

performed with a specially prepared version of the file, using the compose/produce

facility. If new data arises as a result of the "foreign" functions, it would be entered

through the Maintain facility.

These constraints lead to a system which is rather closed and rigid in

structure and, therefore, slow to adapt to changing or new requirements.

3.2 Search Strategy

The data base of TDMS is highly indexed; normally, there is a complete con-

cordance of all fields. This means that the file is indexed by essentially each field

value which occurs in the file, a strategy that minimizes search time in responding to

queries. The results of making retrieval considerations dominant in the design are

that a large amount of space is devoted to the index tables and a large amount of time

is spent updating these tables when records are added or modified. These results are

a manifestation of the usual space-time tradeoffs which are normally available to the

programmer. If fast response to random queries is the most critical requirement for

the query system, then TDMS indeed optimizes the right element. However, in a

multi-file data base there is usually a variation of response times which can be tolera-

ted across the files. Some files have faster response requirements than others; and

even within a single file, a predictable subset of properties will often enter into the

conditional statement of queries while other properties are rarely qualified. It appears

that a system which allows a tradeoff of these factors at the time a file is defined or

loaded will be more efficient in the overall utilization of space and time. If the selec-

tion of which fields and field values are indexed can be made dynamically during the

life of the system, then this tradeoff is adaptive to changing usage patterns or to ex-

perience with the use of the system.

-15-
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3.3 Query Language

The TDMS query language has one property which is extremely desirable in

data management systems. It allows the interrogator to make effective use of the in-

formation he has concerning the structure of the data base which he is querying. The

ability to qualify the scope of the condition through Use of the "item name HAS t' clause

would be rendered more effective, however, if the item name were the name of an em-

bedded file or record rather than the name of a field at the level of the embedded file

within which the condition is directed.

For example (referring to the structure defined in Figures 3 and 4)_ the

TDMS query: "Print employee, job history where job class has job title equal pro-

grammer analyst and position equal section head," is actually ambiguous. In a sense

"job class" does not "have" anything since it is a terminal item (field) in the structure.

As it is, even the intent is ambiguous because it is not clear whether the condition (job

title and position) must co-occur in a single job history record or whether they each

may occur individually anywhere in the job history file of a single employee. A more

effective syntax for the HAS-clause would be:

<file name) [ RECORD I FILE ] HAS

For example, with the new syntax the above query would read

"Print employee, job history file where job history record

has job title equal programmer and position equal section

head_"

if the intent were to print the entire job history file when any one record contained

the specified job title and position. (The word "record _' would be replace by "file"

if the other interpretation were desired. )

The inability of TDMS to take this approach seems to stem from a lack of

recognition that file and record are two distinct entities and levels in the structure.

In TDMS the phrase VVrepeated group w appears to be used indiscriminately to refer to

either. Thus, the characteristic of the query language discussed above appears to

stem from the limitations of the data definition language. Another feature which may
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improve the data definition language is the ability to use the indentations of the outline

format to signal levels in the structure instead of the requirement that the parent

repeated group be mentioned in each subsumed item.

.

(i)
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PREFACE TO GIS

The discussion of GIS is based on references (listed in the bibliography)

released in 1965 and 1966; although the report itself has been largely taken from

Data Management System Survey, AUERBACH Report 1280-TR-1. Although IBM

withdrew the speeifieations of GIS in May_ 19677 and announced that major revision

would be reissued in April_ 1968_ the design concepts reflected in the documents up-

on which this report is based represent important contributions to data management

technology. It is from this point of view that the report on GIS is included.

!

! AUERBACH



4

GENERALIZED INFORMATION SYSTEM (GIS)

1. OBJECTIVES

GIS (Generalized Information System) is a comprehensive Data Management

System that is being developed by IBM Federal Systems Division. It is designed to

operate within Operating System/360 to support a wide variety of data processing ap-

plications by providing facilities for defining, maintaining, and processing data files

and unformatted text.

GIS provides a user-oriented interface which permits the description of

logical data relationships and processing tasks without concern for the processing de-

vices, physical formats, and device operations involved in manipulating the data.

A number of variable parameter statements, which together constitute the

GIS language, are available to allow a user to establish and modify the more static

control tables, to enter task specifications, and to control task execution. The param-

eter content of the control tables and task specification are combined at execution

time to direct and control the flow of program operations. A wide range of file struc-

tures and organizations can be established, maintained, and used.

-1-
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, IMPLEMENTATION AND STATUS

GIS is a set of programs for System/360 that are designed to perform data

file establishment, maintenance, retrieval, and presentation operations that are com-

mon to many data processing applications. GIS is expected to function on a range of

System/360 configurations under control of OS/360. It may be operated in either a job

sequential mode or a teleprocessing (multiprogramming) mode with remote terminals.

The minimum configuration for the job sequential mode is Model 30F (65,536 bytes of

core storage) and, for the teleprocessing mode, a Model 40G (131, 072 bytes of core

storage). In addition, GIS programs require approximately 500,000 bytes of direct

access secondary storage and an interval timer.

GIS programs are run as jobs under the OS/360. The implementation

language for the GIS translator and system programs is Assembler Language. Schedule

of availability will be issued in April 1968.

Although quite different in concept and design from its predecessors, GIS

is the latest in an evolutionary line of IBM file control systems, represented by TUFF,

TUFF/TUG, FFS, and IPS, developed for military operations control centers by IBM

Federal Systems Division. GIS will be supported by an IBM Applications Group (Type

II support).

3. SYSTEM DESCRIPTION

3.1 User Languages

3.1.1 General. Although GIS runs as a job within OS/360, it has many of the

features of an operating system itself. A GIS job is made up of a series of JOB con-

trol cards followed by a task specification. Within each task, GIS will exercise con-

trol over a number of GIS and non-GIS (user supplied) programs.

OS/360 provides the overall control at a given installation concerned with

receiving, queueing, and executing jobs. Core memory allocation, channel time

allocation, program loading, and multiprogramming functions are all handled by

OS/360. The GIS run is initiated by OS/360 in response to the GIS JOB cards. GIS

itself has a control mechanism which interprets the task specification.
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The task specification contains task control information, the names of gen-

eralized GIS service functions (e. g., CALL and QUERY), the parameters needed to

perform the desired action, and user-supplied (non-GIS) programs.

There are two basic modes of GIS operation: JOB-oriented and TP-oriented

(telecommunication processing-orientation). The TP-oriented mode takes advantage

of the capability of OS/360 to handle multiple messages from the telecommunication

devices attached to the system. In the TP-oriented mode, multiprogramming controls

in OS/360 make it unnecessary to initiate a new job for each new task specification. In

the JOB-oriented mode of operation, the user may enter the job from a variety of de-

vices, including telecommunication devices, but, as stated above, must initiate a new

job for each task specification. The job is then processed in accordance with the

priority assigned by the originator.

3.1.2 Job Specification Language. GIS provides a language for specifying the

tasks that compose a job, their parameters, and the condition for their execution.

Task specifications can be saved by GIS and executed when called by the user.

The format for the request to save a task specification is given below:

SAVE INPUT STATEMENT SET <task name> <task specification>

A task specification in the GIS Language is a series of commands and conditional

statements to execute GIS and user-supplied (non-GIS) programs. A task specification

may contain open (formal) parameters whose values must be supplied by the task

specification which names them, or by the user at request time.

A GIS program named CALL will bind the formal parameters of a program.

Its parameters are a task name and its parameter value list:

CALL <task name> <parameter list>

The parameter list must supply values for all the formal parameters of the task named.

Formal parameters in the task specification are named

$15, $25, ...

indicating the sequence in which their values must be supplied.

-3-
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Operation of this program or any other GIS program in a job requires a

command of the form:

OPERATE GIS PG < program name >

PARAMETER EQ <parameter list >

For example, the statement:

OPERATE GIS PG CALL PAYROLL PARAMETER EQ AUG 7

will cause the GIS program "CALL" to bind the user supplied program "PAYROLL"

with its parameter "DATE"= AUG 7

For user (non-GIS) programs in which no parameter binding is necessary,

the command is of the form

OPERATE < program name >

3.1.3 Query Language. As part of the job specification and request language dis-

cussed in the preceding paragraph, GIS has a condition-defining capability which per-

mits a logical (Boolean) condition that must be satisfied by each record before it is

eligible for further processing. Conditional statements can be inserted in any task

specification as a condition for further processing, such as retrieval, data reduction,

updating, reporting, etc. When combined with a retrieval, reporting, or tabulating

function, GIS accomplishes what is called a QUERY. In a query, certain functional

and data reduction operations to be carried out, as well as the format in which the data

is to be presented, can be specified.

A QUERY task specification begins with the word QUERY, followed by a

file name, a logical condition to be satisfied by records of the file, and a statement

specifying the data to be extracted and the processing to be carried out on eligible

records. Because of the file name requirement, a QUERY is limited to a single,

identifiable file.

3.1.3.1 Conditional Statements. The conditional statements involve terms which

take the following form:

<name of field> <comparison to be made > <basis of comparison>
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Theseterms maybe combinedwith AND, OR, andANDNOToperators.
Parenthesesmaybe usedas required. For example,

IF AGEEQ21ANDHAIREQBLONDORBROWN

< nameof field > maybe anyvalid field namein the file beingaddressed.

<basis of comparison> maybeany field value.

< comparisonto be made> mayincludeanyof the following operators:

[= , >, <, # , >, <, BETWEEN, SCAN, MASK, CHANGE

The SCAN operator tests the field for the particular pattern of characters

specified. The MASK operator permits "don't-care" positions in the scan. The

CHANGE operator does not require a basis of comparison. It will indicate "true"

for any value which is different from the value of the same field in the previous

record.

The truth value of each term is evaluated with respect to the appropriate

data elements. These truth values are then combined according to the condition {IF -

statement), following the usual rules of Boolean algebra with respect to the AND, OR,

and AND NOT connectives.

Those data items for which the condition is true are subject to the processing

given in the remainder of the QUERY task specification, as indicated below.

3.1.3.2 Summary Operations. A facility exists to create summaries subsequent

to retrieval but prior to final output (i. e., in a QUERY). The following operators are

included:

TOTAL - causes the summation of the non-blank entries of the
specified field for all selected records.

COUNT - counts the number of non-blank entries of a specified field.

TALLY - counts the number of times a procedure encounters the
TALLY statement.

AVERAGE - causes an average to be calculated for a specified
field.
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3.1.3.3 Data Presentation. Two commands may be used to obtain data presentations

during an update or retrieval task.

LIST - distributes across the page the data (under associated
field headings) from the selected fields. A standard format
is used and the output appears on the device associated with
the query input device.

FORMAT - permits interrupted field headings and data lines,
variable width, height, and spacing, and output device selection.

Either command can be pre-stored in the task specification for the query or

added at run time.

3.1.4 Data Description Language. GIS gives the user (e. g., the programmer)

the ability to define a file once and then refer to the file and its records and fields, by

name (in task specifications), without further reference to its storage format or

organization. GIS stores and refers to the data description so that tasks can be exe-

cuted which reference data elements symbolically. Data organization or format may

be changed without necessarily invalidating established task specifications which refer

to the modified data descriptions. The data descriptions and file processing controls

are stored in a standardized table structure for each file.

3.2 Data Organization and Structures

3.2.1 Data Base Organization. The most generic data element in GIS is the file,

and each data description must begin with a file name and is, in effect, a file descrip-

tion. The types of structures which can exist in a file, however, are quite varied and

general.

A file is composed of an arbitrary number of items, called records, of the

same logical structure. A record may have a multilevel structure which may be de-

scribed as follows: a GIS record is composed of a single "segment"* followed by some

defined number of embedded files, where a segment is a string of a defined number of

fields (at the same level in the record).

*The word segment is GIS terminology. It is a statement whose subitems are fields.
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This defines (recursively) what is called a file in GIS. The general logical

structure of a GIS file is illustrated in Figure 1.

When there is more than one embedded file in a record (at the same level),

each embedded segment must be identified by one of several options (to be described

A GIS File

l _ t An arbitrary numberof records

------_ Segment

I
I

A single segment

t Some fixed numberof fields

Some fixed
number of

i files

Figure 1. A GIS File
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below) such as a key field which is common to all segments at that level and which takes

a unique value for each embedded file. An example of a GIS file organization is shown

in Figure 2, which shows the structure of a hypothetical file called File Zero. The

records of File Zero contain a Level 00 segment (made up of fields C, D, and E) and

two subfiles. These embedded files, Subfile 1A and Subfile 1B, contain Level 01 seg-

ments whose first field is a key field whose value is T'A" for Subtile 1A and "B" for

Subfile lB. The Level 01 segment in 1A records contain the additional fields F and G.

The Level 01 segment of 1B records contains the field J in addition to the key. The 1A

records also contain a Level 02 File. The Level 02 segment need not contain a key

field as there is only one Level 02 segment type in the structure. The Level 02 seg-

ment contains the information fields H and I.

Since the size of a subordinate file may be different in each parent record,

a definition of file size (subrecord occurrence control) mustbe established for each file.

Three options for subrecord occurrence control are provided by GIS, as illustrated in

Figure 3. In the first option, Figure 3(a), each segment must contain a record-count

field for each subordinate file (File 1A and File 1B).

In the second option, a key field which is present in every segment must be

defined. In Figure 3(b), this key is shown as the first field of every segment. Its

value is "Z" in every File Zero record, "IA" in every File 1A record, and "IB" in

every File 1B record. Thus, the key field serves as an identifier of every segment,

thus fulfilling the needs of subrecord occurrence control at the expense of the space

for this field in every segment.

In the third option, a unique one-character termination code is used to signal

the end of every file. As indicated in Figure 3(c), the File Termination Code occurs as

a single character after the last record of every file. While this device is efficient in

space, it is usable only where it can be guaranteed that the bit pattern representing the

File Termination Code cannot occur as the first character of a segment. *

A field is a terminal GIS item- the smallest unit of data that can be referenced

or described. The required descriptive elements for a field are its relative position in

*The GIS Application Manual implies that this character may not occur in any field - a
considerably stronger restriction.
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Figure 2. A GIS File Example
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the segment, its name (and synonym, if any), its type, and its length.

may be any of the following:

(1) Binary

(2) Decimal

(3) Floating point

(4) Alphanumeric.

Field type

An alphanumeric field may be either fixed or variable in length, whereas all others

must be fixed-length. Length control for a variable-length field may be provided by

one of two options: count or terminating code. In the count option, each occurrence

of the variable-length field will be preceded by a "length" field indicating the number

of characters for this occurrence of the field. In the terminating-code option a user-

selected special character is employed to mark the end of each occurrence of the

variable-length field.

3.2.2 Physical Data Formats. In order to accommodate various processing re-

quirements, GIS provides three physical format options for files shown in Figure 4.

In the first option (linear record), shown in Figure 4(a), the data in each record is

physically stored in the same sequence as its logical definition. That is, referring

to the file shown in Figure 3, the fields of the Level 00 segment are followed by all

Level 01 segments of File 1A, followed by all Level 01 records of File lB. (If the

1A records had contained a Level 02 File, those segments would have preceded the

Level 01 segments of File lB.)

In the second and third options (split records), only the segments in the

same level of each file are stored contiguously. In option two (link type split record),

shown in Figure 4(t)), and Figure 5(a), a link field occurs as the last field of each

embedded segment. This field points from each embedded segment to the location of

the segment to which it is subordinate (detail-to-master linkage).

In option three (chain-type split records), shown in Figure 4(c) and Figure

5{b), a chain of links exists which originates in each master segment and threads

through each record of an embedded file and back to the master. Thus, a master seg-

ment would contain a link field for each of its embedded files and, also, a link field

to the next record (or its master, if it is the last record) at its own level.
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3.2.3 Indexing. Indexes in GIS can be organized in any of the four ways shown in

Figure 6. The simple indexes shown in Figures 6(a) and (c) will index fields occurring

in the Level 00 segment of a file. The compound index shown in Figures 6(b) and (d)

can index fields occurring in either a Level 00 segment or a Level 01 segment. Either

a linear or split physical organization can be employed in a simple or compound index.

The index value entries are ordered by data-field value. In the case of a linear com-

pound index, the entries are ordered on both the argument (a Level 00 field value) and

subargument (Level 01 field value).

4. EVALUATION

GIS will offer a programming language, a user-oriented query and command

language, and a set of basic data management functions such as data definition, update,

and query. GIS programs are compiled by the GIS translator and become jobs which

run within Operating System/360. Thus, although constrained to a particular operating

system, GIS provides the user with a data management system of broad capability.

These is a capability of incorporating user-supplied non-GIS tasks in the GIS job.

These may be written in other procedural languages such as FORTRAN or COBOL

but since they may make no use of GIS services, and since they are bound to parameter

and data specifications at compile time, they do not have the advantage of the data

independence of GIS programs.

GIS has a query language with capability of expressing a logical condition of

complete generality, and indexes which can be used for efficient retrieval of data which

satisfies the conditional expression. In GIS, the indexes use physical, rather than

logical, addresses to refer to data, thereby implying more direct access to data but

additional maintenance due to physical data movement. In GIS, several index struc-

tures are offered, but it is not clear from available documentation whether these are

options open to the programmer or whether the choice of index structure is implied

by the type of data structure used. It is likewise unclear whether the simple index

structure is used efficiently (e. g., logical product searches) to answer complex

queries. GIS offers the capability of using masks on the compared values to provide

for a "don't-care" capability within a field. Also available within the GIS query is the

use of several summary operators such as COUNT and AVERAGE.
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In summary, GIS is a high-capability data management system with data and

index structure and query and job languages. Considerable differences exist, however,

in the approach taken in the two systems in the manner of interface of the data manage-

ment system with the programmer and with the operating system. The GIS programmer

must use the GIS language as his procedural language and compile an object program

which runs as a job within the operating system. The DM-1 programmer uses standard

procedural languages such as COBOL. The data services of DM-1 are available to the

programmer as resident executive level services that are integrated as an operating

system/data management system environment.
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INFORMATION CONTROL SYSTEM (ICS)

I. INTRODUCTION

The Space Division of North American Aviation, Inc. and International

Business Machines, Inc. have combined forces to design and develop the Information

Control System (ICS) for the IBM System/360. ICS is designed to permit simultaneous

execution of teleprocessing programs and conventional batch processing programs on

a single computer. 1" ICS is the result of on-line data base systems development at

North American. This development dates back to 1964 when North American and IBM

produced a 1460/1801 on-line data base processing system.

ICS is a message-driven (i. e., terminal-source) data management and ap-

plication scheduling system. As such, its design focus is on the upgrading of the gen-

eralized Operating System/360 to a performance level that uses the terminal system

as its primary control point.

*The superscript numbers denote references in the bibliography.
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Several versions of ICS are planned. Each new version expands the services

and data base description capabilities of the preceding versions. The initial version

of the system will be operational in the first quarter of 1968, with succeeding versions

planned but not scheduled.

It should be noted that ICS is a proprietary system. Questions concerning

its availability must be directed to North American Aviation, Inc.

2. SYSTEM ELEMENTS

Figure 1 depicts ICS as a total system, including its four functional areas:

(1) Communication Control. This function provides the inter-
face between the remote terminals using the system and ICS
itself. Tasks performed by this function include:

(a) Enabling the user to describe the systems lines,
terminals, and their usage via communication de-

(2)

¢b)

(c)

Cd)

Ce)

Of)

Oh)

(i)

0)

(1) Sending messages

(m) Buffer allocating.

Application Scheduler.

scriptive language

Scheduling communication tasks

Opening and closing lines

Character set translating

Time and date stamping

Logging for restart and audit

Transmission error handling

Input and output queuing

Polling terminals

Receiving messages

Addressing terminals

This function initiates execution
•of messages processing programs based upon messages
received. These message types are predefined to the
Scheduler which then performs the function of allocation
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(3)

(4)

of available and required resources to process the message
(i. e., memory, appropriate priority of the message, data
base required to process the message, and application
program to process the message).

ICS Control. This function acts as the interface between the

application program, the application scheduler, the com-
munication control modules, and the data base. Message
response and analysis, along with data base retrieval, are
the two functional task areas processed through ICS Control.

Data Lau_ua_e/I. This function, performed under the
control of ICS Control, comprises the bulk of the remainder
of this report. Through Data Language/I (DL/I), the pro-
grammer is able to describe and process his data bases
without concern for the housekeeping functions normally
attributed to I/O operations. Calls for "segments"* of data
from the data base are made using DL/I calls. These calls
are interpreted by the DL/I Processor, operating in con-
junction with the remaining services that comprise ICS.

Figure 1 also indicates the two modes of processing supported by ICS: con-

current BATCH processing and concurrent MESSAGE processing. A feature of ICS is

the co-residence of both types of processing operating under the same system control

facilities.

2.1 Software Elements

Operating System/360 (OS/360) forms the software foundation of ICS. The

initial implementation of ICS operates with the OS/360 Interim Sequential Partitioned

System. To effect this linkage, ICS requires a modification to OS/360 to allow for

inter-partition communication. This is needed to service the ICS functions described

above, each of which occupies a separate OS/360 partition, or part of one.

The ICS-OS/360 Software package is constructed from, and operates with

the following elements:

(1) Data Language/I for data base definition, creation, main-
tenance, and reorganization

(2) Data bases defined, organized and created within Data
Language/I conventions

*Segments are defined in Paragraph 3.5.
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(3)

(4)

Application programs written in conventional high-level
procedural languages (i. e., COBOL and PL/1)

ICS routines to perform the functions described above.

2.2 Hardware Elements

The first ICS versions will support a communication network comprised of

IBM 1030, 1050, and 2740 terminals. The minimum hardware configuration to support

this network under OS/360 must include 256,000 bytes of core memory. This memory

level will support approximately 60 remote terminals, 5 message processing pro-

grams, 50 different types of messages, and 5 different data bases.

o SYSTEM DESCRIPTION

ICS can be described as an extension of its host operating system, OS/360.

The intent of the system appears to be the augmentation of services provided by OS/

360 toward an easy-to-use set of input/output operations available to the programmers

operating under ICS. The requirement for a standardized form I/O manipulation

facility is obvious to a large programming and systems staff. ICS, through Data

Language/I, provides that interface.

As a consequence of this principal system intent, some of the facilities as-

sociated with generalized data management systems are not part of the services pro-

vided by ICS-DL/I to terminal users. That is not to say that these features could not

be added at a later time because the basis of its design makes ICS an "expandable"

system.

3.1 Operations

ICS system users are defined as those persons accessing the data base

through one of the remote terminals and programmers who provide the application

program code that is processed through the terminals.

Figure 2, Terminal Users, illustrates the operational environment for ICS.

Note that the "master terminal" and "slave terminal" system design philosophy is used

in ICS.

-5-
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Master
Terminal

Data
ICS Base

Terminal

User
Terminal

Figure 2. ICS Terminal Users

3.1.1 Master Terminal. The master terminal serves to control the operation of

the system. This terminal has complete control of the ICS system with respect to

communications, message scheduling, and data base operations. The Master Terminal

must activate the system at start time, monitor the system during operation (through

displays of status, etc.), and alter the operation of the system. A master terminal

language comprises the following commands to facilitate system control:

(1) Shutdown the System. Causes a halt to processing and
queues the time of initiation

(2) Discontinue Processir_ Only. Provides a halt to proces-
sing only, but allows the queues of messages to continue
to build up

_) Refuse Further Input. Allows everything to finish that has
been queued by the system, but refuses further input to the
system
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(4)

(5)

(6)

Initiate Operations. Provides for the starting of the system

Print Control Information. Provides the ability to cause
the contents of the system tables to be displayed on the
master terminal

Alter System Tables. Provides a command that is used to
relate the following to each other:

(a) Transaction code of message to program

(b) Password terminal name to transaction code

(c) Terminal name to line number, terminal address,
or terminal name.

3.1.2 Slave Terminals. The slave terminals are the means by which operators

communicate data-handling information to the system. A terminal command language

is provided to augment the application messages required by the application program:

(1) Terminal-to-Terminal Message Switching. Allows mes-
sages to be sent from one terminal to another

(2) Character Correction. Permits input message character
corrections by a backspace of the carriage

(3) Message Retransmission. Provides the ability to request
output (from the system) message retransmission

(4) Terminal Testing. Allows terminals to operate in a test
mode. No messages are processed, and any messages re-
ceived will be returned until the terminal is subsequently
attached to the system.

(5) Exclusive Line Control. Notifies Communication Control

that this terminal is to be given exclusive control of the
line; other terminals on the line are not to be polled by the
system until this terminal has relinquished exclusive
control.

(6) protection Provisions. Provides the facility to lock and
unlock terminals, data bases, transaction codes, and pro-
grams from a terminal via their name and password.

3.1.3 programmers. Figure 3 illustrates the interface mechanism between the

program written for ICS and the system. Because ICS is intended as an interface only

between application programs and terminal users, this interface does not include

-7-
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Application
Program

Figure 3. ICS Program Interface

generalized retrieval services, report generation facilities, etc. attributed to gener-

alized data management services.

The interface mechanisms illustrated in Figure 3 highlight the following

features of the-Data Language/I system to be detailed later in this report.

(i) Data Base Directory (DBD). The central directory used
by DL/I to describe and locate data in the data base. A
separate Data Base Directory exists for each data base.
The central directory is comprised of a data set of all
individual Data Base Directories. A utility program, run-
ning as a separate job step, creates the DBD from defini-
tions uf segments, segment type codes, and tables defining
the hierarchical relationship of the segments of the data
base.
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(2) Program Control Block (PCB). The interface between the
application program and DL/I. When the PCB is completed
during job initiation, it contains the name of the data set
and the DBD associated with it. It further defines buffers
and a work area loaded by DL/I and used by application
programmers. Communication between the application
program and DL/I is maintained through a field in the PCB.

(3) Interface With OS/360

ICS interfaces with OS/360 through the previously mentioned
ICS Control function. Data calls executed by application
programs (using the PCB) are interpreted by the system,
which calls upon OS/360 Data Management services for
segment retrieval, writing, and indexing.

(4) Job Management Interface

The terminal system described provides the linkage be-
tween the terminal users and the application programs
running under ICS. The messages processable by these
programs, along with the system terminal command lan-
guage just described, provide the means for job manage-
ment within the system.

3.2 System Services

The generalized system services discussed here are available through the

User Interface (i. e., terminals and their command languages) or the Programmer

Interface (i. e., the application programs and DL/I services). Functions mentioned

below are included in the system according to the documentation reviewed.

(i) Directory Updating

Directory updating is provided by the DL/I directory genera-
tion utility program. This job lets the application program-
mer describe the structure of his particular data base.

(2) Data Search

Data search functions are provided through the conditional
expression of segment retrieval under DL/I. One of the
calls that may be made by the application program requests
a search of the data base attached to the program. This
search (possibly executed with a condition stated) is carried
out by DL/I until either the appropriate segment is found
or an indication that the segment is not in the data base is
delivered to the application program through the pro-
gram's PCB.

-9-
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(3)

(4)

Data Search Look-Ahead

Data Search Look-Ahead is provided by the "get next oc-
currence of a segment" call executed by the application
program.

User Accountability

User Accountability is incorporated into the system through
the Master Terminal's assignment of a terminal to the
system. This assignment includes the designation of a
password to be used by the terminal operator to request
data from the system.

(5) Job Restart Points

Job Restart Points are maintained by the system through
the Communication Control function. Messages, i.e.,
implicit job requests, are queued by the system during
their receipt. The system may be restarted at any point
in the message queue by the master terminal operator.
Messages that have remained in the system queue after
system shutdown are brought into the system for proces-
sing subsequent to restart.

3.3 Data Structure

While ICS is a system that operates as a unit under OS/360, its utility is

realized through the system's data base organization philosophy: Data Language/I°

DL/I is the title that the authors of ICS apply to the set of mechanisms and languages

provided for the description, maintenance, and processing of the data used by the sys-

tem's application programs° In DL/I, data base definition is external to the programs

that update the data base. Before a programmer can reference or create his data

base in a batch or message processing program, he must define the program's data

requirements (i. e., format, etc. ) and communicate these requirements to DIffI.

DL/I utility programs are used to communicate these requirements to the DL/I direc-

tories.

3.4 Data Definition

The data structures processable under DL/I follow the form of header-

trailer segment structure. The principle of data definition and processing imple-

mented under DL/I depends upon the ability to describe a file or set of files as a data
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DL/I

Utilities

Directories

Data

I Application
= Programs

Figure 4. Data Language/I

base. The "header-trailer" segment structure readily transforms definable data to

hierarchical form referred to as a "tree structure."

I sHeeg_ert '____ Trailer ____ Trailer I

! I
I I
I I

½

I Trailer i [ Trailer '1

Figure 5. The Header-Trailer Segment Structure

The "header segment" in DL/I is defined as the Root Segment.

The logical description of the data base records to the system is not enough

to process the individual occurrences of the defined records. The link between the

logical description of the data base and the individual records that form the data base

is through the specification of a KEY within the records. This key (e. g., account

number, name, etc. ) is indicated to the system through the Data Base Directory.

-11-
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3.4.1 Simple Files. The records in a simple file contain fields of information ar-

ranged so that each record in that file contains exactly the same fields in exactly the

same arrangement. These fields may be fixed or variable length; i.e., the same field

may or may not vary in length from record to record within the file.

As an example, consider the following hypothetical mrsonnel file

Man # Name Address SS #

Rec. 1

Rec. 2

Rec. 3

Rec. 4

Rec. 5

445

446

447

448

449

J. Doe

D. Smith

W. Walton

R. Jones

B. White

1234 Westland Dr. L.A.

1356 Eastland Dr. L. A.

1589 Eastland Dr. L.A.

1342 Ardis Ave. Dny.

1275 Clark St. Dny

333-11-222

111-22-333

326-10-766

275-05-001

300-99-221

Pay

1500.00

1700.00

450.00

600.00

650.00

This file contains only the man-number, name, address, social security

number (SS #), and pay scale for five persons. Each row represents one record of the

file.

3.4.2 Segmented Files. The segmented file is one whose record contents have

been regrouped into smaller pieces called "segments, " a process similar to chopping

a record into several pieces, with each piece containing only a portion of the original

record. Each of the records in the file was chopped into the same segments; i. e.,

all the segments contain the same field ordered in the same way although the value of

the contents of the fields may vary. For example, if the simple file described earlier

were split into two segments, it would look like this:

Man#

Rec. 1 445

Rec. 2 446

Rec. 3 447

Rec. 4 448

Rec. 5 449

Segment #1 Segment #2

Name Address SS # Pay

J. Doe

D. Smith

W. Walton

R. Jones

B. White

1234 Westland Dr. L.A.

1356 Eastland Dr. L.A.

1589 Eastland Dr. L.A.

1342 Ardis Ave. Dny.

1275 Clark St. Dny.

333-11-222

111-22-333

326-10-766

275-05-001

300-99-221

1500.00

1700.00

450.00

600.00

650.00

3.4.3 Hierarchical Files. Hierarchical files are used by the system to eliminate

repeated data between and within files. The conceptual hierarchy is illustrated in the

sample layout below.
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Line # Record Information

1 445 J. Doe 1234 Westland Dr. L.A.

2 17589 500.00

3 Hospital 300.00

4 Doctor 200.00

5 18811 200.00

6 Doctor 200.00

7 333-11-222 1500.00

Note: 1. Each line represents one segment.
2. The amount of indentation signifies degree of dependence or level.
3. The line numbers will be used in the text that follows when refer-

encing this example.

Starting with the root segment (line #1) and progressing through the file,

successively lower level segments are encountered through line #3 in the preceding

example. This constitutes a hierarchical "path." A requirement of the hierarchical

file concept is that the segments which constitute a hierarchical path must be in se-

quence according to descending hierarchical level.

A segment is classified by the system according to its "type"; two or more

segments are of the same type if they contain the same fields, and those fields are

ordered alike. In the above example:

Type 1:

Type 2:

Type 3:

Type 4:

Line 1

Line 2, Line 5

Line 7

Line 3, Line 4, Line 6

3.5 Data Base Directory Creation

Each data base is described to the system through a utility program provided

for that purpose. The input to that program is a set of DIffl control cards that des-

cribe the programmer's data base.

3.5.1 MODE Control Card. This must be the first DL/I control card in the setup

for the job step. It determines how the step will operate (i. e., TEST, GO, PRINT) and

-13-
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what will be produced from it. There may be only one MODE control card in this Job

step.

3.5.2 DBD Control Card. This card names the data base to be described and pro-

vides DL/I with preliminary information concerning its organization and disposition.

There can be only one DBD control card in this job step.

3.5.3 DMAN Control Card. Each DMAN control card describes one data set that

is to be set up by Data Management to accommodate the data base being described.

There may be up to nine data sets specified for a single data base.

3.5.4 SEGM Control Card. The SEGM control card defines a segment to be con-

tained in the data set defined by a preceding DMAN control card. There may be a

maximum of 255 segments defined. SEGM control cards must be entered in hierar-

chical order. The segments will be physically stored in the data base record in the

same order in which these cards are entered.

3.5.5 FLD Control Card. The FLD control card defines each of the fields in the

segment defined by the preceding SEGM control card that may appear as part of a

qualification statement.

3.6 Item Structures

As is frequently the case with a large system, certain features of the sys-

tem's architecture are not included in the initial implementation. Those restrictions,

imposed by the initial version of DL/I, that apply to its data base defining capability

are as follows:

TVlo

.

Q

o

There shall be only one root segment per data base. This
implies that there shall be only one sort key and hence,
only one sort order per data base.

The total length of the root key in bytes shall be equal to or
less than 255 bytes.

There may be "_' dependent segments per root segment
as long as the restriction listed below is not violated.

The sum of the number of the different named segments
under a root segment shall be less than or equal to 254.
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.

o

Each segment, be it root or dependent, shall be a single
fixed length. The length may vary from segment typ-_-_
segment type, but a single named segment shall have a
fixed length.

It will be possible to have up to 15 levels of dependency
plus the root segment in any single logical record.

I

Provisions will be made for private data bases only. The
special provisions required for automatically operating a
shared data base across several projects will not be in-
cluded in Version 1. As noted above, the sensitivity codes
will be included for dependent segments."

3.7 Program Interface

The principal language elements of ICS are its application program mes-

sages, its terminal command language (discussed earlier), and its programming

languages.

3.7.1 Programming Languages. Application programs written for execution under

DL/I may be programmed in either COBOL or PL/I. In order for DL/I to process

requests from an application program, certain types of entries must be provided in

that program so that the program's data base calls will be communicated to DIffI

routines that perform the functions of retrieval.

The Program Communication Block (PCB) is a set of entries providing the

following information:

(1)

(2)

(3)

(4)

The name of the data set to be processed

The specification of the DL/I functions which will be used

Indication of the types of segments that will be processed

Areas for receiving responses from DL/I.

The individual PCB entries are explained in the following paragraphs. Fig-

ure 6 is referred to by using the "ref' column numbers as pointers, shown in paren-

theses after each entry name.

Name of this PCB (ref 1). This is a label name which the programmer

selects.
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Ref

8

9

10

11

12

13

Control*

ACL

ACL

DCL

DCL

ACL

DCL

DCL

ACL

ACL

DCL

ACL

ACL

ACL

Description

Name of this PCB

Name of Data Base Directory (DBD)

Segment Hierarchy Level Indicator

DL/I Results Status Codes

DL/I Functions to be Used

Reserved for DL/I JCB Address

Segment Name Feedback Area

Length of Feedback Key

Number of Sensitive Segments

Key Feedback Area

Name of Segment Type Highest in

Hierarchy (Root Segment)

Name of Segment Type at Next
Lower Level

Complete hierarchy of all segments
to be used in the application pro-

gram must be accurately shown.

Name of Segment Type Lowest in

Hierarchy

*ACL = Data Provided by Application Programer.

DCL = Data Provided by DL/I.

Figure 6. The Program Communication Block
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Name of Data Base Directory (DBD) (ref 2). This name is obtained from

The Directory of Data Base Descriptions. It is the name assigned to the directory of

the data base which will be processed by the application program.

Segment Hierarchy Level Indicator (ref 3). DL/I loads this area with the

level number of the lowest segment encountered in its attempt to satisfy a request

from the programmer to retrieve a segment.

DL/I Results Status Codes (ref 4). Flags, in character form, arc placed

here by DL/I and remain here unchanged until this PCB is referenced by another DL/I

CALL. These flags tell the application programmer when certain conditions arise,

e.g., end of the data base encountered when sequentially processing the data base.

DL/I Functions to be Used (ref 5). The application programmer places

character codes here prior to opening the data base to tell DL/I which functions will

be used during data base processing.

Reserved for DL/I JCB Address (ref 6). DIffI uses this area for its own

internal linkage related to this particular application program.

Segment Name Feedback Area (ref 7). DL/I puts into this area the name of

the lowest segment encountered in its attempt to satisfy a segment retrieval request.

Length of Feedback Key Area (ref 8). This entry specifies the length of the

area required to contain the completely qualified key of m_y segment to be processed.

Number of Sensitive Segment Types (ref 9). The application programmer

must tell DL/I which segment types he will process in his program.

Key Feedback Area (ref 10). DL/I places into this area the completely

qualified key of the lowest segment encountered in its attempt to satisfy a segment

retrieval request.

Name of Segment Type Highest in Hierarchy (ref 11). As noted previously,

the application programmer must tell DL/I the names of all the different segment types

he will process. He must further indicate the hierarchical relationship of these seg-

ments. The segment names and their places in the data base hierarchy can be obtained
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from the Directory of Data Base Descriptions. Beginning with this entry, the name of

the root segment is entered. Then the names of the segment types to be processed are

listed in exactly the same order as they appear in the Directory of Data Base

Descriptions.

Name of Segment Type Lowest in Hierarchy (ref 13). This entry is made

in accordance with the preceding instructions.

3.7.2 Program Calls. Communication between the application program and the

data base is explicitly requested through the DL/I program calls. These calls are used

whenever the application programmer requests DL/I services from the system.

Operating through the Program Communication Block defined by the programmer, the

calls perform services of OPEN and CLOSE of a file; file reading across a data base

or along the leg of the segment tree; and segment INSERT, DELETION, and lIE-

PLACEMENT.

3.7.3 Qualification Statements. Records may be requested from the DL/I data

base described by the programmer using a form of conditional retrieval specification.

When the program call is supported by a qualification statement of the form described

next, the segment will be presented to the requesting program only if the indicated

qualification has been met in the segment. If the segment is requested and it does not

meet the required qualification criteria, it will not be delivered to the application

program; DL/I will continue the scan of the file to provide a segment that does meet

the qualification requirements.

When the application programmer requests DL/I to perform functions, it is

frequently necessary for him to specifically identify a particular segment by its own

key field and the key fields of all parent segments along the hierarchical path leading

to the segment. These key field references do not appear directly in the call state-

ment; instead, a label given in the statement points to an area in the user' s program

which contains the actual segment-search-argument (SSA).

The SSA consists of two kinds of entries, the segment name and (as required)

a segment qualification statement. The segment name points the system to that entry

in the Data Base Directory which contains the characteristics of the segment and its

key field.
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The segmentqualification statementcontainsentries which DL/I uses to
test the value of the segmentkey field for determiningwhether the segmentmeetsthe

user's specifications. The segmentsearch argumentportion that containsthe qualifi-
cation statementis illustrated in Figure 7. Its componentsare discussedin the follow-
ing paragraphs.

{Segment- Field - Name(_)Compara-
tive - Value}

(_) : Relational Operator

Figure 7. TheSegmentQualification Statement

(1) Segment-
field-name.

(2) Relational-
operator.

This is the name of a segment key field
which appears in the description of that
segment type in the Directory of Data
Base Descriptions. The name is eight
characters long, with trailing blanks
as required.

This is a set of two characters which
expresses the manner in which the con-
tents of the field, referred to by the
segment-field-name, are to be tested
against the comparative-value.

Operator Meaning

b_

b>
b<

must be equal to
must be greater than
must be less than

NOTE: As used above, the lower case
b represents a blank character.
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(3) Comparative-
value.

This is the value against which the con-
tents of the field, referred to by the
segment-field-name, are to be tested.
The length of this entry must be equal to
the key field in the segment; i. e., it
includes leading or trailing blanks (for
alphanumeric) or zeros (usually needed
for numeric fields) as required.

4. EVALUATION

An evaluation of ICS as a total system must take into consideration the

reasons for its architecture and use. The documentation reviewed conveys the im-

pression that ICS is a system developed to support telecommunications processing of

specific applications. ICS is not a revolutionary attempt to change the character of

the programming and systems design functions; programmers and systems designers

still exist under and work with ICS and DL/I just as before. There is one major ex-

ception to that statement; they will be using the features of OS/360 in a standard

manner dictated by the conventions of data base description and processing imposed

upon them by DL/I.

4.1 Ease of Use

DIJI appears to be a system that will be reasonably easy to use since the

standard programming languages of COBOL and PL/1 are continued under DL/I. The

changes incorporated in the programmer's normal attack on a programming job appear

only in his specification of the Program Control Block, his definition of the data base

structure through the data base definition utility provided with the system, and his

altered execution of I/O statements in his program. Certain restrictions implied in

the use of the initial version of DL/I would seem to limit the programmer's use of

the system; however, even these restrictions appear minimal and should be corrected

in future versions of the system. The terminal command language appears to be min-

imally structured to fit the specific requirements of the set of applications.

4.2 Versatility

Considering the features normally associated with a generalized data man-

agement system, ICS would have to be considered a special-purpose system with the

capability of growing into a large, general-purpose system.
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While many features of the general-purpose system have not been incorpor-

ated in the documentation reviewed on ICS, it is felt that these features could be in-

corporated as the system grows with use. The general-purpose Query Language, for

example, could be added when the data base directory system is enlarged to accom-

modate a sufficiently large corpus of data.

4.3 Economy

It is here that ICS appears to offer the most advantage. The relative sim-

plicity of the system enables its implementation at a predictable pace. Expansion on

the system can then come as the need requires.

A second form of economy is seen in the relatively simple way DL/I inter-

prets the data upon request from the application program. As mentioned in the docu-

mentation reviewed, "there is some overhead involved, but it should be minimal."

The simple forms of data base structures that are describable and processable by the

system impose a form of operational economy not realized by more complex systems.

4.4 Responsiveness

The ICS-DL/I system appears to respond to the requirements of the envi-

ronment for which it was structured. The straight-forward handling of data calls,

described previously, does not change the job of the programmer to any major extent.

The terminal system, with its associated command language, is probably sufficient for

the environment for which it was designed.

Finally, it should be remembered that ICS - DL/I is a system built by and

for North American Aviation, Inc. The dictates of the corporate requirement are

seen in the design of the system.

The system is evolving to enlarge the spectrum of services available to the

user of the system. According to the documentation reviewed, ICS-DL/I is to be ex-

panded as follows:

Dependent segments will be stored physically on separate
devices.
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(2)

(3)

(5)

The tree-structured hierarchy of files will be augmented
to include file linkage. With this change, it will be pos-
sible to hold the data itself in a single sequence, strip off
the several keys to that data, and hold these several keys
as related (but compressed) indexes to the main file.

The growth of the system will impose requirements for
including system features to manage and Control large
data bases. These services will be designed to support
a "data base manager" with the following types of
functions:

(a) Operational records for control of persons author-
ized to access the data base.

(b) Operational facilities for the control of system op-
eration by maintaining records of runs that were
made, length of the runs, types of operations
performed, etc.

(c) Security protection facilities to allow for individ-
ual control of the data placed in the data base.

The incorporation of a more sophisticated job control
facility than currently exists, i.e., allowing the console
operator to obtain a running time estimate before a job
is set up for production.

DL/I-based utility program which, when given the name
of the data base and the layout of desired reports, will
obtain the appropriate directory, generate the proper
program, and execute the program just generated to pro-
duce one or more formatted reports from a stored data
base.
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DATA MANAGER- I (DM--1)

1. INTRODUCTION

This appendix describes the generalized data management system designed

and developed by the AUERBACH Corporation and identified as Data Manager - I (DM-

1). The system has been developed for Rome Air Development Center's Reliability

Central program and commercial applications. The development of the system extends

from 1963 when initial conceptual work was done through an internal research activity

funded by the Corporation.

1.1 System Objectives

Data Manager - I (DM-1) is a generalized data management system focusing

on virtually all aspects of the management of the data processed by a computer in-

stallation.. ° including those "data-associated" functions of program specification and

control, job management, data base querying, and data base maintenance. The sys-

tem, operating in conjunction with a host operating system (in the current implemen-

tations), provides a spectrum of data management services in the areas indicated

abov e.
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The documentation reviewed* describes the system as providing:

(i) A rationale for the structuring of a large, dynamic data
base. Data can be integrated into the DM-1 data pool un-
der structural specifications which retain the individuality
of the diverse data items while manifesting the relation-
ships among the items.

(2) A repertoire of generalized system operations that provide

(3)

(4)

(5)

(6)

for the management of the DM-1 data pool. Users can mod-
ify the data and its descriptive parameters to accommodate
new data elements, or new relationships, or to adjust to
changing requirements and operational experience.

A mechanism for retrieving selected data to meet specified
information needs. Users and programmers can access
the precise data items needed to meet on-demand require-
ments for information. DM-1 can display the results of an
inquiry issued at a console, develop a data item with spe-
cified characteristics for further processing, or deliver
the specified data to a program operating with the system.

A procedure which assists an inquirer in defining his in-
formation needs. A user can perform a dialogue with the
system. From displays presented by the system, he
chooses the pertinent attributes to describe the item about
which he needs information. Each display identifies the
classes of information available in the DM-1 data pool.
The displays proceed from generic to specific identifiers
in response to the inquirer's selections. After the attri-
butes are defined, the user provides limiting conditions,
which define the properties of the individual units of infor-
mation he needs, by selecting characteristics to define the
pertinent data from another series of displays.

A library of application-oriented programs and jobs. The
user can add new programs to the DM-1 repertoire to per-
form special-purpose processes on the data. New units of
work (jobs) may be defined as combinations of existing sys-
tem and application programs to meet recurring needs for
data processing.

A mechanism for selectin_ data processin_ routines from
the library and applying them to specified data elements in
the data pool. The user can issue commands from a con-
sole for the execution of any job in the DM-1 library. He
can specify the data items in the data pool to be operated
on by the job.

*See Section 6, Bibliography.
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(8)

(9)

A method of maintaining data and programs as independent,
mutually complementary resources. The data in the data
base need not be oriented to any specific set of programs.
The application programs need not be limited to operation
on specific items of data. DM-1 maintains structural in-
formation about the data in its directories, and it main-
tains information about the data requirements of the pro-
grams in its library. If the requirements of the program
fail to match the characteristics of the data, the system
can transform the data to the format required by the pro-
gram.

A set of system routines to control the execution of DM-1
jobs and to service the data needs of programs during their
operation.

A mechanism to provide for data integrity and security.
Users are protected from unauthorized access to their data.

1.2 Implementation Status

DM-1 is being implemented (at this writing) on the Univac M1218 computer

and on the IBM System/360, Model 50. (Another version, described by the imple-

menters as "machine independent" at the moment, is being produced for the Bureau

of Employment Security).

At this writing, both implementations are proceeding through the initial

stages of development. The systems are in operational "test" status, providing basic

directory manipulation services to programs coded to test the operation of the DM-1

Directory System. The plans are to proceed to complete implementation during 1968,

with delivery of the completed systems to be made during late 1968 or early 1969,

depending upon the implementation involved.

. SYSTEM DESCRIPTION

DM-1 is a console-directed system, which operates in response to user

commands issued in the system's Job Request Language. The user treats the sys-

tems's Job Library as a set of operators at his command. He treats the data pool as

the operands to be bound to the operators. The jobs that he invokes may be lengthy

processes that consist of many tasks to be executed over large files of data or simple

functions that consist of a single operation on a small unit of data. The user may

-3-
AUERBACH



°

execute a job by specifying its name and binding its input and output parameters. He

may supply literal values for the parameters at the console, he may give the names of

the data pool items containing the values, which may be qualified by conditions the

data must meet, or he may specify secondary jobs which will supply the arguments

for the primary job.

Figure 1 provides a graphic description of the mechanisms (i. e., routines

and jobs) that perform the services requested by the user. Note that the system in-

cludes, in addition to the Directory mechanism, a library of connectible generalized

"jobs" which are used by user and system jobs within the system.

2.1 Query Operations

The user has at his command a set of system jobs which enable him to

query the data pool. The query job may be used to answer questions about the state

of any items in the data pool. A condition specification of arbitrary complexity may

be used to select the items of interest.

The user may engage in a dialogue with the system to determine the names

and structural relationships of items in the data pool, to select items of interest, and

to specify conditions for selecting the values of those items for display or processing.

When he can formulate a formal query, the user may call on the query job to create a

new item for processing or to produce a report or display of selected items, based on

the values of those items which meet a condition of arbitrary complexity.

2.2 Programs

A program is described to DM-1 by executing the program description job.

The names and the precise structure of the formal input and output items are speci-

fied at the console. This information is translated by the program description job in-

to an entry in the library. Once a program has been described to the system, it

automatically becomes a job in the system's repertoire. It may be called and executed

on specified data from a console, used as a component in another job, or called and

executed as a subroutine of another program.

-4-
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Programs may be written and compiled or assembled in the programmer's

normal programming language. Calls to DM-1 data management services are made

as executive service requests with arguments transmitted by the language processor

as literals. These are executed interpretively by the DM-1 resident service package.

2.3 Data Storage and Retrieval Services

A program reads data from the data pool and writes data into it by calling

on routines of the Service Package. The Service Package is analogous to an input/

output control system. It contains a resident interpreter and a set of service routines.

The routines are reentrant, so that they serve more than one user at a time.

The program may retrieve an item by giving the formal name assigned by

the programmer or the actual data pool name and supplying a buffer to receive the

data. If a formal name is used, the system translates it into the actual item assigned

to it by the job description or the job-run request. An item may be written into the

data pool in a similar way. The program places the data in a buffer and calls the ap-

propriate service routine, giving the formal name or data pool name of the item to be

written.

When a program reads or writes parts of the same item repeatedly, it may

initialize the system by opening the item for reading or writing. The translations to

internal item identifiers are accomplished when the item is opened. Later operations

on the item are more direct. This service is especially valuable when reading or

writing the records of a file.

The significant characteristics of the storage and retrieval services are

the system's ability to transform item structures and the use of an invariant name in

the program. The name remains the same in the program, no matter which items of

the data pool are bound to it for a given run. It is completely independent of the loca-

tion of the item or of the characteristics of the storage devices.

2.4 Operational Use

DM-1 operates in association with an operating system which controls a

multi-programmed environment. The operating system recognizes DM-1 jobs as a

class. When a DM-1 job is requested, the operating system ensures that the Service
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Package is in memory as part of the operating system's input/output control package.

Oae set of Service Package routines can serve any number of jobs in a time-shared

mode.

Figure 2 depicts the relationships among the system components in opera-

tional use. A DM-1 job is requested by keying the job-request message (command) at

the console and signaling the operating system that a DM-1 job is to be executed. The

operating system assigns memory to the job according to its own scheduling algorithm.

The first step in a DM-1 job is accomplished by the Request Processor.

This is a part of the DM-1 Supervisor which interprets the job request, prepares the

job parameters, and initiates the job. The Request Processor uses the job name to

retrieve the job description from the library. It develops a task list containing the

identifiers for the sequence of component tasks (jobs or programs}. Using the job

images from the job description and the input and output specifications from the job

request, it builds the input/output binding lists to relate the parameters of each task

to data pool items. Any item transformation or conditional selections required in re-

lating actual items to formal parameters are scheduled by the Request Processor.

• ,,_ _v_ :,;a_mger is the part of the DM-1 Supervisor that controls execution

of the job tasks. It reads the next task from the task list, loads it, and gives it con-

trol. The task maintains control until completion, unless the operating system's

scheduling algorithm interrupts it. When the task is completed, control returns to

the Job Manager to load the next task. The last task in the task list is the Request

Termination task, which performs final housekeeping and terminates the job.

While a task is operating, it uses the Service Package to retrieve and store

its data. The Service Package translates the formal parameter names used by the

task to data pool items by using the binding lists. Data retrieval and storage are ac-

complished by the Service Package, which uses the system directories to locate and

interpret the data pool items.

-7-

AUERBACH



User )

I
Supervisor
Reque st
Processor

I
Supervisor

Job

Manager

I
Task

Job /
Library

t

{T_,skL,st/
and Binding |

_ Lists

Service ]
Package

Y

L]_ystem /F- _Directories

wW w_

!! pool

Figure 2. System Operation, Block Diagram

-8-



2.5 System Program Modules

The DM-1 design and implementations are based on modular construction

of the system. The interface between the modules is maintained by a standard inter-

face mechanism (i. e., table) that links an operating program to the system's data

services.

3. STRUCTURES

DM-1 was conceived as a data management system to describe and process

complex data structures. The environment of data acquisition and processing opera-

tions involving a large-scale data base processing calls for a system that is able to

describe and process data in virtually any logically structured form. Because of this

requirement, DM-I's design focus is on a set of mechanisms (i. e., directories and

directory manipulation jobs) to describe and process multi-level hierarchical struc-

tures of data. The tree-structure representation of data noted in Figure 3 (a) is one

subset of the hierarchical structures processable under DM-1.

3.1 Data Items

The generic term "item" has been applied by DM-I's designers to repre-

sent several types of structural entities that are combined to form a working data base.

The items represented by the system fall into several classes:

(1) Field. A field is a terminal item; that is, it contains no
substructure. It is defined to the system by its name,
type, size, and units that its contents represent (e. g.,
volts, amperes, etc. )

(2) Statement. A statement is an item which subsumes other
items. Its subitems may be fields, files, or other state-
ments. The statement is a mechanism for associating
several items to show their relationship and to permit the
system and the user to treat them as a named unit.

(3) File. A file is an item which subsumes an arbitrary num-
ber of subitems, each of which has an identical structure.
Its subitems are called records.

(4) Record. A record is the subitem of a fileand is defined to

the system when a fileis defined. Itis a "logical"item
unrelated to physical blocking.

-9-
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(5)

(6)

Null Node. A null node is a terminal item representing a
position in the logical structure. Itis a means of re-

serving a location in the logical structure of the data base.

Link. A link is an item which logically subsumes a set of
items on another stem in the tree structure. It permits a
logical connection between two branches of the tree and
gives the structure a "lattice-like" network character.

See Figure 3(b) for an example of a linked structure.

3.2 Structural Generality

The design of the system prescribes virtually no limit to the size or the

structural complexity of the data base that it may process. The system will process

data recorded on both magnetic tape and random access devices. Because the direc-

tory system for DM-1 is global (i.e., all data bases that itprocesses may be de-

scribed to and retained by the system directories), it is possible to retain several

levels of physical data storage that are called by the system when a program or query

has requested a particular file. That file need not be on-line to be processed.

The degree of file structure nesting within DM-1 is not limited by its de-

sign. An implementation consideration has limited the number of items that may be

directly subsumed by one item to 255. Each of the 255 structures may represent a

separate file, statement, or field that is required by the parent item during process-

ing. This restriction does not limit the size of a file, i.e., the number of records it

may have.

3.3 Directory Structures

The structural description of the data is maintained by DM-1 in the system

directories. The primary directories are the Item List, the Term List, and the Term

Encoding Table. These three directory structures are used to focus on the data in the

data base and to describe its structure. Processing of the data proceeds with the use

of these tables.

(1) Item List. The Item List is a file with a record for each

item (node) in the data pool structure. The records are

ordered by the internally-used Item Class Code of the item.

Each entry in the Item List contains the item type and the
size of the item. The size of records and statements is the

number of subitems they directly subsume. The size of a

field is the number of units (e.g., bits, bytes, etc. ) that

comprise its physical length.

-11-
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(2)

(3)

Term List. The item names and units are maintained in a
Term List file, which is parallel to the Item List file
(i. e., record-for-record).

Term Encoding Table. This table is retained for each item
in the data pool so that the system can translate the item's
name (externally used) to its internally coded form.

An optional feature of DM-1 is the ability to index selected fields. When a

field is indexed, the system maintains a subsidiary directory table relating the values

assumed by the field to the numbers of the records in which those values occur.

Indexing provides a tradeoff between the speed of retrieval and the size of

storage required. When a field used in a conditional statement is indexed, the system

can focus rapidly on the pertinent items without searching the data stream.

The DM-1 facility for data protection employs two separate, but interacting

mechanisms: the security level and data access/modification rights. Each data item

class is assigned a security level for access and another level for modification. Like-

wise, each user receives a clearance level which gives him access and modification

rights to all items at and below his level.

4. LANGUAGE

DM-I's language considerations are broad in scope. The system is de-

signed to interface with programs written in procedural languages (i. e., assembly

langnage, COBOL, FORTRAN, PL/1) and, in addition, provides a set of languages

for its operation and maintenance.

4.1 User Languages

The principal language provided with the system is the Command (Job)

Language. * All other operational languages are subsumed under, and controlled by,

the DM-1 Command Language:

(1) Program/Job Specification. The language provided for
this facility is the communication medium between the sys-
tems Program Directories and Job Directories and the

* See Appendix B for a discussion of DM-1 Command (and Query) Language.
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user. A program is described to the system by an indica-
tion of its name, input parameters (literal string or data
base item), and output parameters {data base item). This
description is retained by the system, and the code for the
program is maintained by the host operating system. DM-1
and the operating system, working together through the DM-
1 Command Language, perform the functions of binding the
programs together to form "jobs." Job specification pro-
ceeds with a language like the Program Specification Language,
but includes the programs that are to be bound to form the
running job.

(2)

(3)

Program Execution. This language invokes job specifica-
tions and item definitions; it also establishes a control link
between the job and the host operating system. Because
most of the elements of a job specification are retained in
the DM-1 directories, the format and use of the language
are extremely simple.

Data Definition. The directories that focus on the data in

the data pool are establishedand maintained through a

generalized DM-1 job thatprocesses the data definition
language. The specificationof data base structures may
be effectedthrough a console or from a card reader using
a data definitionform.

(4)

A DM-1 data definition can be written in an indented out-
line format which follows directly from a tree-like repre-
sentation as shown in Figure 4. This figure shows the
structure illustrated in Figure 3(b) in standard DM-1
form. Rectangular boxes represent files, hexagonal
boxes represent records, and oblate ovals represent
statements. A link item is a statement with a source or
target pointer at one end.

Query. The DM-1 Query Language operates as a subset of
the Command Language. Provision is made in the language
for complex specification of retrieval conditions, data re-
duction (e. g., sort) operations, and output formatting.

4.2 Programming Languages

DM-1, as mentioned previously, interfaces with the programming languages

commonly used. In addition, complex data management functions are provided with

the system as generalized DM-1 jobs that may be bound with the application code to

form a working program. These generalized jobs take the form of, for example,

Update, Retrieve, and Seek. In addition, the DM-1 program/job directory system,

operating in conjunction with the Command Language, provides the facility for the

-13-
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user's continuing development of the generalized job (or program) to fit the needs of

the installation. This facility would not be available were it not for the system's

focus on generalized services.

5. EVALUATION

5.1 DM-1 Design

The third generation of computer systems and the forthcoming time-sharing

oriented system are not proceeding in an ideally evolutionary way. The problem of

providing a workable computer-user environment for data base systems is fast be-

coming a major sub-area of computer design and development. By intent, many of

the mechanisms of this generation are becoming too complex for the average program-

mer to conceive of, let along manipulate in a meaningful manner. The first and sec-

ond generation utilization of the computer has been primarily to solve the clerical as-

pects of work.., and provide straightforward and simple calculational facilities. The

third generation, however, brings with it the problems associated with a changeover

from the simple to the complex. Data recorded and manipulated in a hierarchical

form is not as conceptually simple as it used to be. It is from this point that the DM-

1 designers evolved the system. It is from this point that the system's utility can be

seen: the separate management of data and programs with a mechanism for linking

data to programs and jobs will, by intent, extend the life of the programs. The man-

agement of data, however, implies the ability for flexible description and processing

of that data. The evolution of data from one format to another, the addition of fields

to records, the transformation of a recording format from integer to floating point,

for example, are all characteristics of the environment for which DM-1 was developed.

Once the above environment is assumed, it is not difficult to conceive of a

system and a design that will fulfill the needs of that environment. DM-1, with a few

exceptions that are being corrected through implementation, has apparently fulfilled

the needs of that environment.

The directory system, with its associated optional extensions to incorporate

data field indexing and data item linkage, provides an associative mechanism that

does not begin with the problems of the data's recording format. It does not begin

--15--
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with these problems because the scope of the system's design assumes the interpre-

tive task of translation between the logical format and the physical format.

The concept of generalized programs is another design characteristic that

should prove extremely useful in the development of software and application systems

during the third and succeeding computer generations. One of the principal concerns

of every programming or systems manager is the cost involved in the clerical aspects

of programming. The same logical functions are repeated by application programmers

utilizing varying algorithms. Generalization in DM-1 can provide both a means for

reduction of the application system development effort and a mechanism for program-

mer standardization.

5.2 Implementation Progress

As with other systems of comparable complexity, DM-1 implementation is

not proceeding as fast as the designers may have hoped. With an associative direc-

tory system as complex as that involved in DM-1, it is sometimes difficult to accept

the extended times required to retrieve items from the data base, but the implemen-

ters have made specific attempts to upgrade the operation of the system. Speed, as

well as flexibility, has now been written into the basic system design as the result of

timings taken during test. The system's basic structure, however, still stands.

5.3 Ease of Use

The system, as conceived, is easy to use. The designers' documentation

has focused on the system's mechanism and has not stated the specifics of those sys-

tem features that make it easy to use.

The programmer interface through a non-special language is an obvious

feature that does not demand that the programming staff be retrained to use the sys-

tem.

The DM-1 Command Language goes far in replacing the complex parame-

terization job languages that have evolved with the third generation of systems.
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5.4 Ver s atility

The two system features of separate data management {through the directory

system} and generalized jobs {manipulated through the program/job languages) make

the system versatile by intent. The separate management of data and programs im-

plies the facility for changing (or evolving} either entity without the corresponding and

expensive problems of program modification.

Another area of versatility involves modifications to the data described in

the directories. The optionally-used facility to link data base structures provides the

mechanism for cross-file retrieval and processing.

5.5 Economy

The versatility just described carries with it a price tag. DM-I is an in-

terpretive system and, as such, operates as a translator of program-data require-

ments, among other functions. One of the principal concerns of the implementation

team has been the reduction of the time required to process records through DM-I.

It has succeeded in modifying the internal mechanism structure (i. e., routines and

linkages} to optimize the record or item retrieval time. The team is giving further

consideration to providing the often-nsed data services routines through read-only

memory; another attack has been through the combination of fields in the program-

data linkage mechanism to reduce the number of instructions executed with a pro-

gram's data request.

Another economic consideration was mentioned; that of reducing application

system development time through the use of generalized services and user-coded

function programs. It is here that DM-I finds its principal economy. As the problems

of interpretive processing time are solved, the utility of the system will increase.

The generalized program manipulation facility will be used to produce application

systems in shorter time frames, thereby bringing them into the computer at a quicker

pace,., to be modified and developed through the changing application at a pace that

meets the needs of the application.

-17-
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5.6 Responsiveness

The system's principal design, as stated previously, incorporates the

mechanisms for responding to the requirements of several typos of system "users."

DM-1 concerns itself with operations personnel and analysts (through the Command

Language), programmers (through its program and job manipulation system), system

designers (through the ability to combine the system's generalized programs), and

managers (through the system's Query Language).

If the system is finally delivered in an operational state that reflects its

designers' intent, DM-1 will be one of the most powerful generalized data (or environ-

mental) management systems conceived. Whether, in fact, it will perform as speci-

fied remains to be seen. The system's basic architecture has been demonstrated as

implementable and usable; the system's full scope has yet to be demonstrated.
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TIME--SHARING SYSTEM/360 C'rss/360)

i. GENERAL

TSS/360 stands for "Time-Sharing System" for the IBM System/360, Model

67. This system, currently being developed by IBM, is intended to support simul-

taneous interactive access to a system by several users at terminals as well as a

batched job stream.

The important distinctions between the Model 67 and other S/360 models

are two capabilities which are needed to make time-sharing a practical operating con-

cept:

(i) Virtual Memory Addressing

The programmer may address 224 bytes of virtual storage.

This virtual store is organized as 16 segments, each seg-
ment consisting of 256 pages of 4096 bytes each. Each

user is permitted to use as much of this space as neces-

sary. Virtual storage addressing is made practical by the
base register method of address computation (available in
all S/360 models), and by eight high-speed associative

registers which hold the most current logical-to-physical
page address translations.

-1-
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(2) Multiprocessing

One or two central processors share jointly addressable
core memory modules. Up to two channel controllers
may be employed. Each communicates with both proces-
sors and all memory modules; they may share peripheral
devices. (The formerly announced goal of four proces-
sors and four channel controllers has been retracted).

TSS/360 provides the user a set of on-line programming services through

which he may prepare programs for use in the system, execute his own programs or

system service programs, and maintain his own data structures within the system.

A conversational FORTRAN IV compiler and a conversational symbolic as-

sembler will be available for interactive program preparation. The terminal command

language is the link between the user and the system services available to him, and is

the vehicle by which he creates and manages data within the system.

In such a system, the user at his terminal has certain advantages over the

programmer using a batch-only programming system. The many steps involved in

preparing a program or maintaining data bases are carried out in a conversational

mode and at the user's own pace. Since the user receives feedback as he carries out

his steps, he can verify his actions, minimizing the number of iterations normally

involved in these tasks, and in general make the most effective use of the program-

mer's time.

A disadvantage to the remote terminal user in TSS/360 is that he is limited

to conversational FORTRAN IV and assembly language for coding his programs inter-

actively. (Conversational PL/I has been retracted and COBOL, previously limited to

batch only, has now been withdrawn altogether. )

(Other limitations in TSS/360 are the withdrawal of a remote job entry

facility and, compared to other S/360 operating systems, the withdrawal of SORT/

MERGE, graphics support, checkpoint restart, and support of the 2321 Data Cell

Drive and the 2260 Display Station. )
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. THE EXTERNAL FILE SYSTEM

2.1 Introduction

Data Management in TSS/360 is the facility for the physical management

of data, and thus meets our definition of an External File System. The Data Manage-

ment facilities include three "access methods" for use by problem programs, and sys-
3*

tern services for the on-line user through a command language.

2.2 Identification of Terms

The following terms should be clarified before proceeding:

(1) Volume

A physical unit of secondary storage media, e.g., a disc
pack or a reel of magnetic tape, is called a volume.

(2) Sequential

A volume is sequential if, when it is in use, the read or
write mechanism is in contact with only one storage
position, and may reach other points by only one path
through storage. Examples of sequential volumes are
magnetic tape and paper tape.

(3) Direct-Access

A volume is direct-access if its access capabilities are
more precise than those of a sequential storage device;
for example, data cell, disc, or drum are direct-access
volumes. The improvement in access time may be due to:

(a) mechanisms which are in contact with many storage
positions simultaneously

(b) addressing, which enables the access mechanism to
be placed in the ballpark (cylinder in the case of a
disk} of the data

(c) a combination of the two. Direct-access generally
denotes direct addressing of a block rather than a
byte (as in core memory}.

(4) Data Set

The symbolically referenced data entity in TSS/360 is
called a data set. A data set is a collection of one or
more records; it may subsume other data sets or be part
of another data set. A data set is "in" the system if it is
stored on a volume.

*Superscript numbers denote references in the bibliography.
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2.3 TSS Data Structure

The most important goal of an external file system is to provide symbolic

referencing of data entities in order to shield the user of these services from hard-

ware considerations and burdensome "housekeeping" chores. Thus, a discussion of

how data is structured and what elements in the structure are symbolically referenced

is in order so that the user's interface can be properly presented.

2.3.1 Data Set Names. The user assigns a symbol (name) to each data set. The

data sets are strictly tree-structured, * and the name of any data set carries the names

of all its supersets, thus setting up a symbolic identification of its superstructure.

The composite name takes the form of simple names separated by periods, e.g.,

VERTEBR. MAMMAL. CANINE. DOGS. This composite name has 26 characters; the

limit is 35 characters and 17 levels.

In this example, VERTEBR. MAMMAL. CANINE,VERTEBR. MAMMAL, and

VERTEBR are also data set names. The system appends a user ID to each data set

name; these ID's are kept in the system catalog.

Provision is made for alternative names, called aliases, to be assigned to

data sets. This feature is convenient when a data set is shared among several users,

each of whom may wish to choose names which are most meaningful in the context of

his problem.

2.3.2 System Catalog and Volume Table of Contents. The System Catalog is a

special data set maintained for on-line direct-access devices. It represents the

directories of the data structure, and is the bridge between a data set name and the

volume on which it resides (and the relative location on the volume if magnetic tape).

The restrictions on user access to data sets also reside in the system catalog, which

comprises a master index and the user's catalog. The former lists the users cur-

rently active in the system. The users' catalog contains the indexes of the defined

data sets to whatever level their names imply.

*In the material reviewed there_ is no mention of linking between data sets stemming

from different branches or roots, i.e., lattice points.
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In the example, the full data set name might be JOEBLOW. VERTEBR.

MAMMAL. CANINE. DOGS. The master index lists JOEBLOW as a user and points to

the user catalog address which lists his data sets. In the first level index there will

be an entry for VERTEBR, and this entry will point to a second level index, contain-

ing entries for MAMMAL, MARSUPIAL, etc. The entry for MAMMAL will locate the

list containing CANINE and FELINE, etc.

At the lowest level, the entry for DOGS will identify the volume containing

the data set. Each volume has a volume table-of-contents (VTOC). In the example,

one entry in the VTOC will exist for the data set JOEBLOW. VERTEBR. MAMMAL.

CANINE. DOGS, and will point to the physical starting address of the data set for that

volume.

Provision is made for convenient naming of a data set type which may have

successive versions generated and present in the system, e.g., weekly payroll data

sets. This type is called a generation data group; the data sets retain the same name

but are assigned generation numbers, with zero representing the most recent

generation.

2.3.3 Data Set Organization. The data sets are of two types:

(1) Physical Sequential. The unit of data exchange is the
block, which comprises one or more logical records in-
tended for processing by 0S/360. Also, sequential volumes
(magnetic tape) are restricted to this organization.

(2) Virtual Storage. The unit of data exchange between the
direct-access device and virtual memory is the page (4096
eight-bit bytes). There are three organizations of Virtual
Storage data sets:

(a) Virtual Sequential. Logical records are arranged in
the order created, and assigned to blocks (pages).
Reference made to a block by a user program results
in return of the retrieval address. Thus, within a

block, the user programmer may supply his own
direct-access criteria or his own indexing when
Virtual Index Sequential (discussed next) does not
meet his needs.
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(b)

(e)

Virtual Index Sequential. Key data with each record
locates the record or locates overflow record key
data. A page directory contains the value of the key
in the first record of the page. The user may al-
locate data set records to pages in a way that leaves
room for convenient expansion, thus more efficient
operation. (Otherwise, overflow records are created,
and more steps are required during retrieval. )

Virtual Partitioned. Data groups organized sepa-
m---t_un_ t-_p-_vious methods may be combined
into one data set. The separate groups are called
"members" and may be mixed within the virtual
partitioned data set. The name of a member then
consists of the name of the virtual partitioned set
followed by the name of the member enclosed in
parentheses. The first entry in the data set is the
partitioned organization directory, which locates and
describes the members.

2.4 The User's Interface

The user's interface to the data management facilities is at two levels:

(1) the macros employed by his programs during execution
for access to the data sets and related needs

(2) the command language through which the on-line user may
reference his data sets or call upon programs that do so.

2.4.1 Access Methods from Programs. Several access methods, corresponding

to the types of data set organization, are provided for program input/output.

For each data set used, a data control block (DCB) must be established

_ithin the problem program. The DCB contains various parameters describing the

data set and the way it is to be processed. The actual processing of the data set

begins with the issuance of an OPEN command and continues until the issuance of a

CLOSE command.

The access methods and brief descriptions follow:

(1) Physical Sequential Data Sets

BSAM (Basic Sequential Access Method). BSAM is used
for physical sequential data sets which are primarily on
magnetic tape. The basic operations are READ and WRITE,
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(2)

which only initiate the reading or writing of a block. The
user is responsible for his own buffering, but may use the
CHECK macro to Check for completion of the read and
write operations. Also, GETPOOL, FREEPOOL, GETBUF,
and FREEBUF macros are provided for allocating pools of
buffers and individual buffers within pools.

Virtual Storage Data Sets

(a) VSAM (Virtual Sequential Access Method). VSAM is
used for virtual sequential data sets. The principal
operations are as follows:

(i) PUT, used to store records. Records are stored
in the order in which they are delivered. When
a record is stored, the system gives the stor-
age address back to the user, who may use it
for later retrieval.

(ii) GET, used for sequential retrieval of records;
i. e., a series of GET's will retrieve the
records in the same order as they were stored
by the original series of PUT's. Both PUT and
GET can be used in either move or locate mode.
In move mode the user points to the record; in
locate mode the system points to it.

Oii) SETL sets a pointer to the retrieval address of
a specific record in the data set. Retrieval is
then sequential from that point.

(iv) PUTX, used to replace a record retrieved by
a locate-mode GET macro.

VISAM (Virtual Index Sequential Access Method).
VISA___Mis used for virtual index sequential data sets.
The principal operations are as follows:

(i) PUT and GET, for sequential storage and re-
trieval by key; i.e., the records are delivered
to or from_rage in key sequence.

(ii) WRITE and READ, for non-sequential storage
and retrieval. WRITE causes the system to in-
sert the record at the proper point in the key
sequence, but requires more processing than
PUT. READ retrieves a specific record by
key or retrieval address.

-8-



(c)

(iii) SETL sets a pointer to a specific record in
the data set by key or retrieval address.
Processing is then sequential.

(iv) DELREC deletes a specific record from the
data set by key or retrieval address.

VPAM IVirtual Partitioned Access Method.
VPAM is used for VP data sets. The principal
operations are FIND and STOW.

FIND is used to prepare a particular mem-
ber of the data set for processing. The
processing of the member is then done via
VSAM or VISAM depending upon whether
the member is a VS or VIS data set.

(ii) STOW puts the resulting member into the
partitioned data set and updates the Par-
titioned Organization Directory. The ac-
tual operation accomplished by STOW may
be the addition, deletion, or replacement
of the member; or the changing of the mem-
berts name.

2.4.2 Data Management Through the Command Language. The command language

is the medium through which the on-line user communicates with the system. It is

used for scheduling his tasks, preparing programs for execution, requesting informa-

tion, and manipulating data.

Individual users may be granted access to a TSS/360 system by means of

JOIN commands issued by privileged system personnel. Each user is provided with

an identification code, a password, charge numbers, a priority level (for use by the

scheduling algorithm), a privilege class (manager, operator, administrator, user),

and a user authority level (user, privileged system programmer, non-privileged sys-

tem programmer). A user's access rights to the system may be terminated by means

of a QUIT command.

A conversational task begins with a LOGON command issued from the user's

terminal and continues until a LOGOFF command is issued. A non-conversational

task may be initiated from a conversational task by issuance of an EXECUTE
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command, which calls for execution of a command procedure that is prestored in the

system as a data set. The command procedure must being with a LOGON and end

with a LOGOFF command.

The portion of the command language which is of primary interest is that

used for managing data. This capability is subdivided and presented in the following

sections.

2.4.2.1 Data Set Creation and Related Functions.

manipulating the data set structure.

(1)

(2)

Nine commands are provided for

CATALOG - Enter or change a data set name.

DELETE - Delete a data set name (not necessarily the data
set).

(3) DATA - Create a data set (data supplied from terminal or
through card reader).

(4) MODIFY - Delete and/or insert lines in a VISAM data set.

(5) ERASE - Remove data set and its references (implies
DE LETE function).

(6) DEFINE DATA - Describe a data set for linkage to a
program.

(7) RELEASE - Nullify previous DEFINE DATA effects; also
release I/O device.

(8) CALL DATA DEFINITION - Refer to a data set containing
DEFINE DATA commands and act on those.

(9) COPY DATA SET - Duplicate a data set.

The commands may result in a dialogue between user and system involving

prompting, informative responses, or diagnostics until the function is complete.

2.4.2.2 Data Set Protection and Sharing. These commands are used to control user

access to data sets:

(1) PERMIT - Grant other users access to one's data set, or with-
draw permission granted previously.
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(2) SHARE - Establish access to a data set belonging to
another user who has granted it via the PERMIT command.

Without the PERMIT command, a data set is accessible only through the

user ID associated with its creation.

Data set sharing may be specified at three levels; "read only," "read and

write," and "unlimited." (Any user may ERASE as well as read and write. )

Protection mechanisms are provided to control simultaneous reference to

data by different users. These interlocks, when activated by one user, delay any

other reference to a data set which he is writing, and delay any other writing of a

data set which he is reading. The setting and resetting of these interlocks according

to level and the unit of data protected are shown below:

Level (Data Unit) Access Method How Set How Reset

Data Set All OPEN CLOSE

Member VPAM FIND STOW/CLOSE

Page All GET/READ CLOSE/Reference

another page

2.4.2.3

sets for punching or

Hard Copy Capability. Three commands are provided for dumping data

listing:

(1) PUNCH causes specified data set contents to be produced
on punched cards.

(2) PRINT causes printout of the specified data set.

(3) WRITE TAPE causes data set contents to be copied on
tape in a format suitable for printing.

3. EVALUATION

3.1 Secondary Storage Data Addressing Capability

In the tree-structure of data sets within virtual storage, the ability to

reference any branch symbolically is good, and the limit set at 17 levels should be

sufficient for anyone. The (partial) ordering within the structure being implied by
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the symbol (name) of the branch is useful, both from the point of view of the user

working without the help of an internal file system and from the standpoint of efficient

operation, especially in changing the directories for additions and deletions.

Within a data set which is an indexed sequential file, logical records may

be retrieved in the order stored, or in the order dictated by key data, as specified by

the user.

3.2 S_e_

(1)

(2)

None of the material referenced mentions any backup and
restore capability; surely some capability is mandatory.
One can only conjecture that at least a manually initiated
utility is provided for this purpose.

The controls for restricting access to data sets seem
adequate. A program which finds itself locked-out, how-
ever, has no way of knowing whether it is practical to
proceed. Carrying version numbers (edition numbers)
would improve this situation.

3.3 Data Structure Accessing and Manipulating

The limitation to a tree-structure is not as severe as it may seem on the

surface, for other structures may be set up within that framework (although efficiency

of operation is bound to suffer somewhat).

The directory structure allows for minimal overhead in deleting or adding

branches. The data set name-to-physical address translation takes place when the

data set is "OPENed", and the volume identification and physical address are used

for subsequent references. As indicated previously, within the tree-structuring of

the data, the operation seems well-conceived.

3.4 Program Interface

Detailed information is not available, but an IBM report 2 indicates a full

set of standard services, including label checking. Worthy of note is the fact that

one may build external file system services (with special data structures) of his own,

and co-exist with TSS/360 access methods. The supervisor will accept channel pro-

grams for I/O through the Input/Output Request (IOREQ) facility.
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3.5 User/Data Interface in a Time-Sharing System

For a system with no internal file system, TSS/360 provides about as much

data management capability to the user as can be expected. The command language 3

seems easy to use. Notable is the facility to produce a hard copy of selected data.

With no internal file system, any on-line query capability must be built by the user.

3.6 Degraded Operation/Operational Adaptability

In the material reviewed, no mention is made of fail-soft features or ability

to cope with a dynamic reconfiguration.

3.7 Multi-Level Secondary Storage Management

This capability is claimed by Comfort, 1 with "activity" being the criterion

for moving data up or down the storage device ladder. It is not clear how refined this

capability was to be or what was meant by "activity. " There is no mention of level

changing in more recent material. Further, support for the 2321 Data Cell Drive is

withdrawn. Further, although "direct-access device" is the term used in discussing

data set management, the impression is given that this means disc storage, and that

the drum is strictly for core-image programs and page-swapping.

3.8 Adaptability of Design

The design seems to place no limit on the growth of the data base, nor does

it seem to suffer inefficiencies because of growth. The design seems highly dependent

upon 360 equipment, however. Although much future IBM software will be coded in

PL/I, it is assumed that 360 assembly language is used. The only user terminal

supported is the 2741 Communications Terminal. Independency of equipment is dif-

ficult (perhaps undesirable) in external file system design, and is a more appropriate

criterion for evaluating the internal file system design.

3.9 Support of Internal File System

For the portion of the data structure which should be physically tree-

structured, the access methods could be used to advantag e by higher level file system

programs. For other structures one would have to build his own external file system,

which in turn uses the IOREQ facilities of TSS/360.
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In developing a powerful general-purpose file system for a time-sharing

environment, the Model 67 and basic TSS/360 services and language translators would

furnish fairly good support. But the file system per se is only a small subset of the

structure that would be needed for the management of an on-going data base.
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BERKELEY TSS (BTSS)

1. INTRODU C TION

The time-sharing system developed at the University of California at

Berkeley is part of a project (supported by the Advanced Research Projects Agency

(DOD)) devoted to exploring and developing techniques in man/machine interaction.

The time-sharing facility at Berkeley is now operational; it utilizes an SDS 940 com-

puter, which is basically a copy of the SDS 930 with hardware modifications designed

by the Berkeley group to make it more suitable for time-shared operation.

6*
The designers state that their objectives were to construct a time-sharing

facility for the following purposes:

(1) to develop and test some ideas in time-sharing a digital
computer

(2) to develop a useful facility for a variety of experiments
in man/machine interactive areas.

It should be emphasized that the time-sharing system, although general in

nature, is an experimental system intended to give great flexibility and fast response

to a limited number of users. (In particular, it is not designed to serve a large

*The superscript numbers indicate references in the bibliography.
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number of users over a broad spectrum of problems, such as a utility approach to

time-sharing. )

Each user of the Berkeley Time-Sharing System (BTSS) is given a "copy"

of a slightly modified SDS 930 with 16K of fast memory. The "copy" differs from the

normal computer in the following respects:

(1) an obvious impairment of some real-time capabilities

(2) the substitution of system I/O commands for machine I/O
instructions

(3) the addition of software interpreted instructions, system
services, and large-scale interactive subsystems, such
as an editor (QED), computation system (CAL), assembler
(ARPAS), debugger (DDT), and others.

. SYSTEM DESC RIPTION

2.1 Hardware

The hardware configuration for BTSS is shown in Figure 1. The SDS 930 is

a 24-bit, fixed point machine with one index register, multi-level indirect addressing,

a 14-bit address field, and 32K words of 1.75 microsecond memory in two independent

modules. Briefly, the modifications to the 930 are as follows:

(1) Addition of Monitor and User Modes. Since the role of

the system monitor is unique among the programs which
use the system, the SDS 930 has been modified to permit
the use of a certain class of privileged instructions and
unrestricted memory only for programs that are part of
the monitor. Attempts to execute privileged instructions
in user mode are trapped by the hardware. Privileged
instructions are those which (a) affect peripheral equip-
ment, (b) halt computation, or (c) interfere with rapid
response to interrupt requests.

(p.) Addition of a Hardware Mapping Mechanism. In moni-
tor mode all memory references are absolute. In user
mode, however, all core references are made through
a hardware mapping mechanism so that an attempt to
access an unassigned location results in a trap.

(3) Addition of System Programmed Operators (SYSPOP).
This is an extension of the normal 930 feature called the
programmed operator (POP). SYSPOPOs and POPVs are
invoked by setting a bit in the instruction word. During
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execution, the operation code of these instructions is taken
to be the relative address in a transfer vector stored in a
fixed location. Thus, these operators function as a special
kind of subroutine call. The SYSPOP's, however, givethe
user 64 new "machine instructions," which are automatically
executed in monitor mode and do not require him to allocate
memory or provide linkages.

2.2 Monitor and Executive

BTSS provides two distinct levels of system supervisory software with

which programs can interface. The lowest level, called the monitor (and operating

in monitor mode}, provides the basic time-sharing mechanism using a time quantum

clock and a hardware page mapping technique so that each user has a "machine"

which can be controlled by the execution of instruction sequences at the machine

language level. The "machine" configuration is very similar to that of a standard

medium-sized computer.

The next level of software, called the executive, operates in user mode and

provides for multi-user access to the machine with an expanded set of software inter-

preted instructions which control memory sharing, execution of multi-process jobs,

and an external file system. The executive controls access priority and scheduling,

using a software storage map for each process which is independent of the hardware

(core) map mentioned previously. It might be said that the Monitor (and hardware)

provides the mechanism for time-sharing but the Executive provides the policy and

strategy. This stratification of control into two levels (which does not include the

programming system level with which the normal "non-toolmaking" user would inter-

face} means that BTSS can be viewed as a general-purpose computer which executes

machine level programs a little slower than the non-time-shared computer. (This

distinction would be important only for real-time applications with critical timing

constraints. ) This view is especially important for programmers who are developing

software tools for higher level users or perhaps modifying the executive system

itself.

2.3 File System

2.3.1 Input/Output. The primary emphasis of the (software implemented} user

input/output instructions in BTSS has been to make all input/output devices interface
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identically with a program. This results both in programs which are independent of

the environment, and in a simpler implementation of the system.

Each input/output instruction names a file or is associated with a file pre-

viously named. Files are associated with physical devices by the system, and a file

in BTSS is either sequential or random.

2.3.1.1 Sequential Files. A sequential file is a sequence of records of arbitrary

length, each of which is made up of a string of cells of fixed length. The three in-

structions, CIO (character input/output), WIO (word input/output) and BIO (block in-

put/output) specify the type of item considered as a cell in each case. Thus, input/

output for a sequential file handles a string of "cells" of fixed size. The files may

physically originate on teletype, drum, disc, or tape. A full-duplex physical interface

is provided for each device (generally invisible to the using program). A character is

8 bits, a word 24 bits, and a block 256 words. The file is identified as input or output

at the time it is opened.

The sequential file system for auxiliary storage (drum, dis% or tape) pro-

vides for files whose records are composed of one or more blocks. The location of

these records is stored in an index file which contains a pointer to each block in the

file in order, an end-of-record indicator and an end-of-file indicator for each block.

Blocks of the index file are chained to provide the required capacity. Available space

on the drum is managed with the aid of a drum map, which is a two-dimensional array

of one bit cells. The 72 columns of the array represent the tracks of the drum, and

the 64 rows represent the 64 256-word sectors (blocks) around the track. Thus, each

bit in the table represents the availability of one of the 4068 blocks on the drum. If

a new block is required, the system reads the rotational position of the drum, and

searches that row in the table for the appearance of a 0. The column in which a 0 is

found indicates the track on which a block is available. Because of the way the row is

chosen, this block is immediately accessible.

2.3.1.2 Random (Addressable) Files. Indirect addressing of secondary storage is

provided by a set of special instructions, in which the addressable cell is either a

word or a block. The record is synonymous with a block in this case so that the end-

of-record indicator is not meaningful.
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2.3.2 File Commands. It has been mentioned that all input/output in BTSS is

full-duplex*, a situation which permits, in particular, a unique reaction to users at a

keyboard. The full-duplex character-by-character (CIO) capability means that the

user can interact with his program at the character level. For example, this capability

permits the following activities:

(1) The program can substitute characters (or strings of
characters, including the null string) as echoes for
characters (or strings) received.

(2) The keyboard can be used while information is being out-
put on the display.

(3) Transmission errors can be readily detected.

(4) The system can recognize command and file names on the
basis of the minimum number of input characters required
to discriminate among alternatives.

The system can be set to three modes of name recognization, as follows:

(1) Expert. Minimum string recognition applies.

(2) Beginner. Full name is required if it is three characters
or less.

(3) Novice. Full name must always be used.

Name recognition for file names can always be disabled by using quotes

around the name. Files are "owned" by a particular user but may be declared to be

either public or restricted. If a reference to a public file is made by other than the

owner, it must be made in the following way:

(JONES) ABLE

where JONES is the owner of the file and ABLE is the file name. Reference to a pri-

vate file must be made as follows:

(JONES, TERCES) ABLE

* Full duplex means that the information transmitted by the source is interpreted by
the destination and retransmitted to the source over a separate channel.
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where "TERCES" is Jones' password (called a group name). The string ", TERCES"

will not be echoed by the system so that the typed display looks exactly like the first

example.

If name recognition is enabled (expert mode), the system response to the

preceding string would be as shown in Table 1. Names of new files must be designa-

ted by quotes.

TABLE 1. NAME RECOGNITION

User System Action Display
Types

(

J

O

, TERCES)

A

Name search initialized

Directory is searched for name beginning
with "J". More than one is found.

Only one JO... is found. System types
'rNES"

Password is checked. Only ")" is echoed.

Jones' directory is searched for file name
beginning with "A". Only one is found.
System types BLE

(

(J

(JONES

(JONES)

(JONES) ABLE

Some file manipulation commands in BTSS are as follows:

DEFINE <name > TO BE '<name>'. (defines a synonym)

DELETE <name>

LOAD < name >

COPY <name> TO <name>

DUMP ON <name>

FILE DIRECTORY (produces a listing of the user's directory.

2.3.3 Directory Structure. Access to user and file directories in BTSS is based

on name randomization, a process which transforms the name into an address within

a directory area known as the hash domain. Each entry in the hash domain consists

of a string pointer (the addresses of the first character minus one, and the last
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character of the string} and a pointer to a description block (the "value" entry). The

string is the name which has been randomized. The general format of the directories

is shown in Figure 2.

Descriptive
Parameters

Hash
Domain

String Storage

Description
Blocks

Pointers

Figure 2. Directory Format

The descriptive parameters are the following items:

directory length

special group names (passwords)

tape system numbers

drum address for this directory

user number

tape parameters
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In the user directory, the description blocks contain the following items

for each entry:

pointer to hash table entry

drum address of file directory

maximum drum allowance

user status

hash code for his password

accounting information:

total computation time

log-in time

In the file directory, the description blocks contain the following items for

each entry:

length

drum address of file

date last written

type: sequential or random

access restrictions: private or public

group accessibility (password}

status

3. EVALUATION

The designers of BTSS started out with what they said was an experiment

to test some ideas in time-sharing and man-machine interaction. What they accom-

plished must certainly be regarded as a highly successful operational system. The

following can be listed as its accomplishments:

(1) It has introduced some important innovations in second-
generation hardware for time sharing; these compare
favorably with what is being introduced in third-genera-
tion systems.
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(2)

(3)

It has an easily used interface with the user and has
effectively supported the development of user-oriented
subsystems such as an interactive editor, compiler, and
computation system.

It has been widely adopted by commercial time-sharing
users.

The three-level structure of BTSS--monitor, executive, and subsystems--

has contributed to the ease of developing user-mode software (including the executive

and subsystems). The concept of providing an interface at the monitor/hardware

level provides a general-purpose computer to the machine-language programmer and

undoubtedly enhances the effectiveness of the system programmers who developed the

higher levels of the system. This is an attractive principle which has a bootstrapping

effect and perhaps should be more generally adopted in developing new time-shared

systems.

The user interface (and system flexibility) provided by the combination of

full-duplex operation and name recognition has much to recommend it. However, the

structure of the system directories, particularly the use of randomized addressing in

these tables, does not seem ideally suited to name recognition, which depends on the

examination of partial argument strings and determination of whether they are unique.

A table whose arguments were indexed (or chained) alphabetically would appear to be

a better match to this function.

The structure of the sequential and random input/output operation is well

conceived but there does not appear to be a need for, or an effective way to utilize,

the very rudimentary variable record capability which is described. (None of the in-

put/output instructions or file commands appear directed towards the access or pro-

cessing of a variable length record.)
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PREFACE TO MULTICS

The following description of the MULTICS file system is based on unofficial
preliminary specifications which are understood to be subject to change and,
in many cases, are incomplete. It is presented not as a description of a
system to be implemented but as a set of concepts which are important to con-
sider in formulating an overall framework for any data management system.
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MULTICS

1. INTRODUCTION

MULTICS is a general-purpose, time-sharing system based upon the

GE 645 computer, an extension of the GE 635 adapted to a time-sharing environment.

The MULTICS software system, a joint project of GE, MIT, and BTL, is to provide

a comprehensive set of programming services with a high degree of reliability, si-

multaneously to a variety of users, both absentee and on-line. This goal, along with an

evolutionary capability, is the major influence in the design of the MULTICS system.

In this line, most coding is being done in the PL/I language in order to maintain mod-

ularity and machine independence.

The MULTICS system incorporates segmentation and paging features which,

because they are invisible to the user, aid in program writing, sharing of programs,

and sharing of data under the control of protective mechanisms. Through the frame-

work provided by the MULTICS systems, users can build a repertoire of commands

and programs to facilitate their use of the system. MULTICS, as designed, provides

the user with the capacity to construct a high-level programming system adapted to

his needs.
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The need for a versatile, on-line external file system in such an environ-

ment is one of the main concerns of the MULTICS system. In the environment of a

large time-sharing system, a large-capacity, quick-access external file system is

essential. Storage strategies must efficiently incorporate the concepts of information

usage and multi-level storage hierarchy. This, in addition to recovery capability,

controlled access, and machine-independent and device-independent manipulation, is

the goal of the MULTICS secondary storage (external file) system.

The file system has two primary responsibilities in the MULTICS system,

segment management and multilevel storage management.

Segment management involves the maintenance of directories; the creation,

truncation, and deletion of segments; access control; and the retrieval of needed in-

formation. Multilevel storage management involves recovery back-up procedures,

movement of files through the secondary storage hierarchy, and salvaging of unused

storage space.

Before proceeding further into a discussion of the MULTICS file system, an

understanding of certain terms is necessary.

• STORAGE

HIERARCHY - the ranking of addressable storage devices
according to their access times and rates
of data transfer

• FILE

• SEGMENT

• PAGE -

• DIRECTORY -

- a linear array of entries residing in
secondary storage

a linear array of words or pages known
by a symbolic name. In secondary
storage a file and segment are equivalent.
Segments may be paged or unpaged;
unless paged, a whole segment must be
brought into primary storage for proc-
essing.

a subdivision of a segment (64 or 1024
words) which is known to the system but
invisible to the user

a system file each of whose entries is
the name of another file
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o STRUCTURE OF THE FILE SYSTEM

The file structure is basically a tree hierarchy of data and directory

files across which links may be added to facilitate access to other files. To the file

system, each file is a linear array of formatless entries of known size. The format

is supplied by higher-level modules or by the user. Each user knows a file by a

symbolic name and may reference any element of that file by the file name and the

linear index of the element in the file. At the root of the tree structure is the root

directory which is pointed to by the file system and is unknown to all other directories

(see example in Figure 1).

I Root

Directory

Multics [
Command i i User

Directory ] I Directory

1 IDirectory Directory

/1\ I
User 1 Files

[ Local
[ Command
[ Directory

m _ _ n

- - - J Directory

I\
User 2 Files User n Files

Figure 1. Example of Directory Structure
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Each entry in a directory is the symbolic name of a file and need be unique

only in the directory in which it occurs. The entry is a pointer either to another

entry (in the same or another directory) or to a file. Pointers to entries are called

links, and pointers to files are called branches. Links have no purpose other than

pointing to an entry. A branch contains descriptive information such as the physical

address of the file, the time the file was last modified, the time the file was last used,

the access control information, and the current status of the file.

With such a complex structure in a heavily used system, it is desirable to

keep users from encountering large amounts of directory searching. As a result, the

file system is so arranged that each user works in one directory at one time; one such

scheme appears in Figure 1. More than one user can have the same working direc-

tory, and the inferior files of one directory can be inferior files of other directories,

i. e., common files. Any node (file} in the tree structure can be named by the

sequence of entries needed to reach the file from the root. In Figure 2, the names

for files 1, 2, 3, and 4 are D:F, D:F:H, D:E, and A:C, respectively; the colon is

used to separate entry names. If one adds the asterisk to mean the level of immediate

superiority and adopts the convention that names relative to a working directory have

an initial colon, then naming can be accomplished in terms of an arbitrary directory.

0

2

o Directory

Data File

Figure 2. Tree Structure Example

In the preceding example 3 relative to 2 would be :*:*:E, and 4 relative to 2 would be

:*:*:*:A:C.
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If one allows links to be established between entries, then files may have

different names for different users. Since the file structure restricts each node to

only one immediate superior, links provide the facility for common files without

duplication. Consider the example in Figure 3.

0

Figure 3. Tree Structure with Links

The entry J in directory 6 is a link to the branch G in directory 1. The

entry I in directory 5 is a link to the entry J in directory 6, thus acting as a link to G

in directory 1. A pathname (analogous to the tree name of Figure 2) relative to the

root for directory 7 can be D:F:G, D:J, or A:I. The pathname similarly may be de-

fined relative to the working directory if the link is included in the concept of superi-

ority. As an example, suppose the working directory has the pathname A

(directory 5); a command such as CHANGEDIRECTORY :I results in a new working

directory 7 with pathname A:I. The command CHANGEDIRECTORY:* would result

in returning to pathname A (directory 5).

o ACCESS CONTROL IN THE FILE STRUCTURE

Access to files in the MULTICS file system is controlled by the access

control module (ACM). Whether a certain user has the right to access a given branch

is determined by the mode of that branch with respect to the user. To determine this,

an ACL (access control list) is maintained with each branch containing the list of

users with their mode. (The ACL can be modified, and is maintained in a non-

redundant form. ) The mode consists of five attributes, each of which can be on or

off: trap, read, write, execute, and append.
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The trap attribute is the most significant and is checked first. If the trap

is on, the ACM calls the procedure which is the first entry in the trap list (TL)

associated with the user in the ACL that caused the trap. The procedure, using

pertinent information from the branch and the user reference, specifies the values

of the other four attributes. The initial state of these four attributes (the usage at-

tributes) is called the apparent mode; the final state is called the effective mode and

is dominant. If the trap is off, the apparent mode is the effective mode. By means

of such commands as LOCK FILENAME, KEY, and UNLOCK FILENAME, the user

can create a trap which excludes or partially restricts all users who do not know the

KEY.

The usage attributes, if ON, allow the user to perform the indicated opera-

tions on the file pointed to by the branch. If the file is a directory, the meaning of

each attribute is accordingly different. The meaning of read and write is clear.

Execute means to execute the contents of a file as a procedure and, in the case of a

directory, to search it. Append, in both cases, indicates the addition of new informa-

tion without altering any of the original contents.

Thus, access is dependent upon the source of the access attempt and the

mode of the user with respect to the particular branch involved. Hence, if a file may

be reached in more than one way, the access along each path can be different.

. THE FILE SYSTEM PROGRAM STRUCTURE

Whenever reference is made to a segment by means of symbolic name or

segment address, the file system must make the segment available to the user's

process. Figure 4 is a block diagram of the modular structure of the basic file sys-

tem which describes the general flow of action.

With the exception of system interrupts and errors, the user calls the file

system in two ways:

(1)

(2)

The File Coordination Module. To manipulate entries
in the user's working directory

The Segment Management Module. To make segments
available to a user's process.
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4.1 The Segment Management Module (SMM)

The SMM maintains a record of all segments known to the current process.

(A segment number has been assigned for this process. ) For each known segment,

an entry is made in the Segment Name Table (SNT) containing the call name (a sym-

bolic entry name), tree name, the segment number, and other pertinent information.

If the segment is active (page table in core), an entry exists in the Segment Status

Table (SST) for that segment; it contains such information as the number of processes

to which it is known and the files to receive I/O resulting from paging this segment

in and out of core.

When a user calls for a segment for the first time, a fault occurs. The

linker module picks up the call name and transfers control to the SMM which searches

the SNT. If the call name is found, the segment number is returned to the process

via the linker. If the call name is not in the SNT, the SMM, via the search module,

locates the segment in the user's directory, assigns a number, updates the SNT,

opens files to receive I/O as a result of paging in this segment, updates the SST,

establishes a page table and segment descriptor if the segment was not active for an-

other process, and finally returns the number to the calling procedure. The SMM

maintains a Synonym Name Table (SYNT) for synonyms for a segment name. If calls

use a synonym, the appropriate file name is substituted before any processing is

carried out.

The SMM also provides facilities to create and work with copies of an orig-

inal file called execution files as well as a facility to ask questions and make declara-

tions about segments known to the user's process.

4.2 The File Coordinator Module (FCM)

The FCM provides primitive facilities for the user and system to manipu-

late entries in directories in the following ways:

(1) Create an entry

(2) Delete an entry

(3) Rename an entry
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(4)

(5)

(6)

Return status on an entry

Change the ACL for an entry

Change working directory.

The validity of the user's attempt to use the FCM is determined by reference

to the ACM. A Working Directory Table (WDT) is maintained for the tree names of

the user's working directories.

4.3 Other File System Modules

As can be seen in Figure 4, there are many other elements in the program

structure of the MULTICS basic file system. The following list summarizes these

modules and the services they provide.

SEARCH MODULE. A module which is called by the
SMM and uses the FCM to search a user's directory
hierarchy for a particular file

DIRECTORY MANAGEMENT MODULE. A module

called by the FCM to find a particular entry in a
directory

FILE CONTROL MODULE. A module called by the
SMM to open and close files for I/O operations which
maintain status in the Active File Table (AFT)

ACCESS CONTROL MODULE. A module called by
the FCM or the SMM indirectly to perform access
evaluation (Section 3)

PAGE MARKET MODULE. A module which periodic-
ally resets page usage bits to maintain a Page Out
Table (POT) of likely candidates for removal when
space is needed

PAGE MANAGEMENT MODULE. A module which

services requests for pages missing from an active
segment. A free page is assigned by using the POT
or, if it is empty, by random removal of a page of
appropriate size.

I/O QUEUE MANAGEMENT MODULE. A module which
services calls for I/O operations for entries in the
AFT. Requests are placed in the appropriate queue
for a device interface module which will handle the

request.
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DEVICE INTERFACE MODULE. A module for each type

of secondary storage device which executes the proper
strategy for I/O operations on its device. These modules
maintain STORAGE ASSIGNMENT TABLES, which reside

on the storage device and determine where to store or
retrieve information.

In addition, there are other file system modules which,
although not basic parts of the file system, are an
integral part of the file system capability.

MULTILEVEL STORAGE MANAGEMENT MODULE. An

independent supervisory level process, this module
collects and evaluates usage information on stored files,
and uses this information along with accounting informa-
tion to shuffle files through the secondary storage com-
plex to appropriate level devices.

UTILITY MODULES. A library of modules which pro-
vide the necessary functions for manipulation of links
and branches and for direct I/O operations from sec-

ondary storage.

. THE SECONDARY STORAGE BACKUP SYSTEM

Devices which can be removed from the system, e.g., tapes, data cells,

and disc packs which are used by the system as an extension to the on-line file system,

are known as the file backup storage system. In MULTICS this backup system uses

magnetic tapes to retain copies of all files known to the system. New files (created

or modified) are copied onto a pair of tapes; by restricting these tapes to an N-hour

period (expected to be three hours), catastrophic failure effects can be confined to an

N-hour dumping period at most. Every week there is a weekly dump of all files used

in the preceding W weeks (expected to be four weeks). This dump is done in two parts;

the first for all files essential to the operation of the basic system, the second for all

files used in the last W weeks. These tapes need be retained for only a few months,

while the incremental tapes must be kept indefinitely (periodically consolidated to

remove obsolete files).

If a catastrophe should destroy the on-line storage systems, unloading can

be accomplished using the most recent weekly dump tape and the incremental dump

tapes since the last weekly dump. If the first part of the weekly dump tape (and the
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incremental tapes if a change has been made in the basic system since that time) is

reloaded, the system can proceed to load the incremental dump tapes and then the

second part of the weekly dump tapes. Usage and modification information assures

that only the most recent of a set of redundant files will be reloaded.

An on-line storage salvage procedure is provided to eliminate conflicts in

directories which result from system failure prior to completion of file system up-

date procedures. In addition, the system provides procedures which allow the user

to wait for retrieval, process other material while waiting, abort the process re-

questing a file, or delete the directory entry in the event that a file requested is not

in on-line storage. If the file is desired, the system informs the operator of the date

and time of the appropriate incremental dump tape and awaits loading. If a file is

deleted, its directory entry is destroyed, but a copy remains on the incremental tape

and can be accessed if the name, date, and time are known.

0 MULTILEVEL STORAGE POLICIES

The file system assigns all secondary storage dynamically; no areas are

permanently assigned to a user. In no way does the system restrict the amount of

information a user may keep within the file system, only that which may be in on-

line storage devices. An accounting module has the responsibility of regulating the

amount of on-line storage given to any one user at one time. The location of informa-

tion is invisible to the user. Storage devices are classified by the file system accord-

ing to levels which correspond to the data transfer speeds (greater speed, higher

level number). These level numbers are used by the Multilevel Storage Management

Module to make on-line storage capacity more efficient.

. PHYSICAL FILE STRUCTURE

The MULTICS system has the capability for storing data in four structures:

(1) Serial Linear Files

(2) Random Linear Files

(3) Serial Logical Record Files

(4) Random Logical Record Files.
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Both types of linear files have the same format; they are linear arrays of

entries (called elements) with a predefined size (in bits). Elements may be referred

to by an index relative to the beginning of the file. The only difference between serial

and random is that in any I/O operation, a serial file is referred to by an index rela-

tive to the current element, while a random file is referred to by its element number.

For a file to be random linear it must be stored on a random access medium.

Both types of logical record files have the same format; they are a collec-

tion of records each having a record number. Each record is made up of a variable

string of elements of predefined size. The length of each record may be different and

can be changed. A block header contains the number of elements in each record.

(The concept of serial and random for logical record files is the same as for linear

files. )

A distinction between handling serial and random files is that serial files

are considered to end with the last non-null entry. A random file, on the other hand,

is considered to be of fixed size, with null records between the last non-null record

and the end-of-file.

8. EVALUATION

This MULTICS file system can be discussed only as a set of design con-

cepts as the system has not yet been implemented nor is there any assurance that the

version implemented will bear a strong resemblance to the preceding description.

The MULTICS file system design, however, is inclusive, and has overlooked few

features of significance in the external data management area. Since it permits a very

general hierarchy of file naming and structural membership, there is little need, if

any, of file duplication for control purposes. Files and programs are sharable among

specified users, with proper safeguards, and adequate provision is made for backup

and recovery.

The only adverse criticism of the file system is that it is complicated by

logical (internal) file management services which may have been easier to handle

within the framework of an internal file management system.
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INTEGRATED INFORMATION PROCESSING SYSTEM (INTIPS)

i. INTRODUC TION

INTIPS (INT_____egrated_Information Processing S_ystem) is a configuration in

which various dissimilar computers and peripheral devices may be interconnected via

an electronic switch. The external file system, * which will reside in one computer,

is to provide a centralized facility for the management of data in the system's second-

ary storage. While a facility must be provided for operational use, it is recognized

that the file system is also experimental in nature, and will evolve with experience.

Design goals include considerations such as:

(1) Accommodation of new computers, devices, and memory
in an essentially open-ended configuration

(2) Multi-level secondary storage management. The ability
to review periodically the usage of data and its distribu-
tion over storage devices of differing access times (and
costs), and change the assignments to allocate resources
most intelligently

E. W. VerHoef:
1966, p. 66.

Design of a Multi-Level File System.
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(3)

(4)

Ability to handle growth of data base to a projected maxi-
mum of one billion blocks* with no design changes and
minimal loss in performance

Ability to cope with dynamically changing device availa-
bility, also core memory in which the file system resides.

2. SYSTEM DESCRIPTION

The file computer is currently the PDP-8, with a basic core memory of

4096 words, expandable to 32, 768 words. The file system design is not confined to

the file computer, as companion programs must exist in the executive control pro-

gram of the computers serving the problem processes. Besides conveying control

information and other data between user and file computer, the executive provides

certain services pertaining to the status of the control information. Otherwise, file

system functions are the domain of the file computer.

The report used for this study** deals with the functions of the file com-

puter. The file computer accepts operations to be performed from other computers,

and returns the results. This dedication of a processor to the external file system

function has advantages, and some disadvantages, but in any case is an important and

distinguishing feature of INTIPS.

Modular design of programs is emphasized. Nearly all routines must be

serially re-usable and able to be relocated during execution.

2.1 Data Structure

The unit of symbolically addressable storage in this file system is called

the block (6144 bits). Every block is a member of one and only one collection of

blocks, called a file. Each file is a member of at least one collection of elements

called an aggregate. The elements of an aggregate are files and/or aggregates. Any

aggregate may be a member of zero or more aggregates. A unique name is associated

with each aggregate in the system. A file is known by one or more names, each name

unique within an aggregate. A block may also be named. Besides reference by name,

a block, file, or aggregate may be assigned an ordinal number by which it is

* A block is defined here as 6144 bits, or 3x2 11.

** E. W. VerHoef: Design of a Multi-Level File System.
1966, p. 66.

Proc. Natl. Conf. ACM,
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distinguished in a collection (for reference purposes, no storing order implied). One

could think of collections with "named" elements as unordered sets, and numbered

collections as ordered sets.

The index structure consists of four lists: the Aggregate Bucket Index,

Aggregate Bucket List, Aggregate Record List, and File List. In order to understand

the organization, the notion of the "bucket" will first be developed.

Ignoring the added complexity due to the hierarchical organization of data,

the indexing problem is much like the one encountered in maintaining an address book.

Starting with a blank book, it would not be wise to enter names indiscriminately in any

order. Instead look-up time can be reduced by dividing names into categories. One

method is to collect all names beginning with the same letter into a bucket, and index

the 26 buckets in the address book. Now within a given bucket, entries can be made

in no particular order, and average look-up time is reduced significantly. * However,

to be most effective there should be about as many names starting with Z as there are

with C. The method for categorizing into buckets should be chosen to produce an ap-

proximately uniform distribution. This technique is called "hashing" or hash encoding.

There is a rule, then, used by the file system, to reduce a name to a bucket

assignment of 0 through 63. The Aggregate Bucket Index consists simply of 64 entries,

each of which locates a bucket in the Aggregate Bucket List. In a given bucket in the

Aggregate Bucket List is a list of names. When the match is found by searching the

list, a locator stored with each name leads to an entry in the Agg_regate Record List.

This entry lists the elements of the aggregate. Some elements are aggregates, re-

presented by a name and bucket number, and some are files. The entry for a file will

contain a locator of file information contained in the File List. Since the aggregate

record may have many entries which have to be scanned (by name or ordinal number),

a hashing technique is also used here to reduce the lookup.

The entry in the File List contains a list of block names and locators, and

control information. The control information includes such items as a user ID and

access restrictions.

In a book with 676 names, the "indiscriminate" method would require an average of
338 searches per lookup, whereas assuming 26 entries per bucket, the bucket meth-
od requires 13 + 13 = 26 searches.
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In these descriptions the term "locators leading _' to entries in another index

has been used rather than addresses. These locators are called in INTIPS .System

Assigned Symbols (SAS), which are converted to physical addresses through a SAS

Index before the next level of reference can actually be made. This extra overhead

introduced in referencing a block is directed toward reducing the overhead in carrying

out maintenance functions. A change in structure or storage allocation results in a

minimum of updating to these indexes; i.e., many index entries lead to the same

physical address.

2.2 Operations

In Table 1, a summary of operation descriptions, let B stand for "block

name or ordinal number," or "block" according to context. Similarly let F = file,

A = aggregate, and C = user-supplied data.

TABLE 1. SUMMARY OF OPERATION DESCRIPTIONS

User Program
Specification

C, F, A

B, F, A

A

F, A

F, A, C,

F 1, A 1, F 2, A2

F, A

A

Optional
Specification

NB

F

NF

NF

Function(s)

Store C asBinFof A. Number

it N B.

Retrieve B of F of A.

List elements of A, or list all block
names in F of A.

Lock or release F of A (end of run
also releases).

Create F record of size C for A.

Number it N F.

Include F 1 of A 1 as F 2 of A2.

Number it N F.

Delete F's membership in A.

Define new aggregate name A.
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TABLE 1. SUMMARY OF OPERATION DESCRIPTIONS (Cont.)

User Program Optional

Specification Specification Function (s)

AI, A 2 N A

AI, A 2

A

Let A 2 be an element of A 1.

Number it N A.

Delete A2's membership in A 1.

Delete A and all nodes which it
uniquely includes.

These services are available to the user program in two modes of opera-

tion; in Random Mode there is presumably no useful relationship between the param-

eters in one command and those of the next. Each command therefore contains ex-

plicit values (either name or ordinal number} for the parameters A, B, and F. Con-

trol Block Mode is used when an orderly sequence of references is intended, such as

sequentially stepping through the blocks in one file, then again through those in the

next file of the same aggregate. In this case the user takes advantage of services pro-

vided for ordinal number increment and decrement. After a "Ready Aggregate" or a

positioning command, subsequent references may specify B of F by relative position

to the previous reference.

2.3 Other Features

2.3.1 Access Rights. The user may allow others to access his data at several

levels. Currently planned are read-only, write-only, and read and write. Also the

executive programs may protect their control information from all users. Explicit

access specifications must be given to restrict the use of data since, without them,

the data is public.

2.3.2 Multi-Level Secondary Storage Management. Blocks are allocated to files

in groups of 8. With each group is associated a count which is increased upon retriev-

al of any block. At regular intervals these usage counts are plugged into an algorithm

which yields a usage measure based upon the previous value of usage measure and the

current count. (Current counts are forced to values between 0 and 1 by dividing by

the largest count in the time period before using the algorithm. The reason for this
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is not clear if the intervals are truly "regular. ") The resulting usage measures for the

groups indicate the way they should be distributed over storage devices of varying

access times and costs; "semi-permanent" reassignments are made accordingly.

The user has some privileges in that he may place upper and/or lower bounds on the

storage device level to which his data is assigned and have his data "visit" a higher

level for the duration of a run. This advantage protects the infrequent user who

nevertheless has good reasons for fast access during execution.

3. EVA LUA TION

The ability to manage data structured as a lattice is a significant degree of

generality over systems which confine data structures to a tree. However, the more

flexibility in the structure, the more critical becomes the design of the directories or

indexes and the procedures for lookup. One of the challenges remaining in designing

file systems with non-simple data structures is the discovery of ways to cut down the

time needed for successive references to the indexes in locating an item. It is appar-

ent that the INTIPS file system designer is at least conscious of this problem, as ex-

emplified by the use of hash encoding. A technique which would be especially effective

in this situation, where a satellite computer is dedicated to file management, is to

utilize whatever core memory is available to hold copies of indexes or selected por-

tions thereof. This procedure would enable a significant reduction in the time to

access a block. In the material reviewed, however, there is no indication of the oper-

ational techniques employed.

Although the SAS mapping tables, needed for going from one index to the

next, are a considerable overhead factor during retrievals, this price is paid to re,

duce overhead during operations which move data or restructure the indexes. In a

system with a static or slowly changing data base, this might not be justified. Such

systems are exceptions rather than the rule, however, and INTIPS is not seen to be

one of the exceptions.

In the material reviewed, there is no mention of a machine-independent

language used for developing the file systems programs. It is assumed that machine

language is used, and that a new host machine would mean a new coding job. This

assumption is not meant to be a negative point, as the price of machine-independence

is high overhead, which is a severe enough problem in file system design without
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compounding it. The design concepts seem amenable to implementation on any

machine having appropriate I/O capabilities.

A surprising omission is the apparent lack of a backup system. While this

may be elaborate (automatically triggered backup or restoration of selected files) or

simple (specially scheduled manually initiated utility program), some capability to

protect against loss of a data base should be considered a requirement. No doubt at

least a minimal capability is intended, as the design goals include immunity from ca-

tastrophics due to losing devices. This could be a significant cost area in a system

which aspires to a data base of 109 blocks, as the number of tape reels needed to hold

the backup data is in the neighborhood of half a million.

Although the delegation of file system functions to a dedicated processor has

many advantages, the arguments which would normally justify an elaborate level-

changing capability hold to a lesser extent in this arrangement. That is, the argument

is basically that one is willing to pay a bit of overhead and additional program devel-

opment cost for the ability to match high usage data to fast-access devices in the in-

terest of better performance. The total access time (beginning with user making I/O

request and ending with user in control and operation complete) is approximately ex-

pressed as the sum of two terms, one a "constant" overhead term C, and the other a

term D proportional to the latency of the device holding the data (and indexes). If the

data is on a device at level 1, the access time T1 = C + D 1 is less than if it is at level

2 (T2 -- C + D2). The relative gain of T 1 compared to T2 due to difference in storage

device is significant only if C is a small contribution to the expression. Examples of

overhead contributing to the value of C are the shipping back and forth of the Control

Block between computers, and the processing of the Control Block which precedes the

accessing of the host device.

Borrowing the representation of storage levels used in the VerHoef refer-

ence, the INTIPS approach to data distribution over storage device levels is depicted

in Figure 1(a) (assuming 4 levels). In this illustration, the shaded area represents

how storage requirements at 50 percent of capacity would be distributed. This solu-

tion seems wasteful of the unused storage at levels higher than 4. Yet one cannot go

to the extreme of packing everything at the top, for a new demand for level 1 would
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precipitate a series of shifts in order to make room. The obvious compromise is

depicted in Figure l(b). This arrangement leaves buffer space at each level but does

not assume, as in (a), that the best distribution is one of uniform percentage occupancy.
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APPENDIX B. INSCAN: A SYNTAX--DIRECTED LANGUAGE PROCESSOR*

by

Mark Resnick and Jerome Sable

* Submitted for presentation at ACM National Conference, Las Vegas, Nevada, August
27-29, 1968.
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ABSTRACT

This paper describes the operation of Inscan, a generalized language
processor whose operations are controlled by action graphs. The
action graphs are capable of specifying both the syntax of the language
and the actions necessary to translate or otherwise process it.

The concept of syntax-directed processing is introduced, and the re-
quirements of a user-oriented metalanguage are discussed. The
operation of the Inscan processor is explained. Action graphs are
described in two forms: a pictorial form convenient for design, and
a string-language form (STAG) convenient for computer processing.
Several examples of action graphs are given, including one which
specifies the syntax of the STAG language.
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APPENDIX B. INSCAN: A SYNTAX--DIRECTED LANGUAGE PROCESSOR

B. 1 INTRODUCTION

B. 1.1 Concept of Syntax Directed Processing

The problem of building a language translator can be partitioned into two areas.

The first is concerned with the specification of the syntax of the source language and

the actions to be taken upon recognition of each syntactic type. The second is con-

cerned with an algorithm for simultaneously scanning the source language string and

the syntax specification and producing an object language string. That the problem ,

could be broken up in this way has been known for some time and has been extensively

reported in the literature. See, for example, the published surveys (Refs. 2, 7, 8). One

of the theoretical results of partitioning the problem in this way is that the same scanning

algorithm can be used with each of several syntax specifications for parsing and trans-

lating several languages. Although this has been theoretically understood and often

mentioned in the literature of syntax-directed compiling, very little use has been made

of multi-language translators in a system context. The ADAM system (Ref. 4) and the

AUERBACH generalized data management system called DM-1 (Ref. 6) are two sys-

tems which have attempted to do this.

B-1

_RBACH



The purpose of this paper is to discuss some of the possible modes of use of

a syntax-directed processor, and the design and use of a particular syntax-directed

language processor, called Inscan, which is part of DM-1.

It is believed that Inscan is unique in that it offers a convenient user-oriented

language for language and language processor specification. Our premise is that the

route to optimal language interface with the users of a system (users at all levels,

programmers, analysts, experimenters, and managers} is to provide a universal pro-

cessor rather than a universal language (or even several universal languages). In

Inscan, the syntax of the language to be processed, and the actions to be taken, are

specified by the designer in a chart called an action graph. Inscan allows an experi-

mental or adaptive approach to language development and, furthermore, permits both

interpretive and translational modes of operation.

B. 1.2 Processing Framework

A syntax-directed language processor can be used in several modes within a

given system context. Consider, for example, the language processing needs of a

hypothetical user-interactive system which manages an on-going data base. Within

this context there may be several types of user languages:

(1) Compiler language

(2) Macro-assembler language

(3) Command language

(4) Data description language

(5) Data language

(6) Job description language

(7) Data service language

(8) On-line computational language.

It should be possible to perform a large part of the input stream scanning, analysis,

and interpretation of these languages with basically the same, or similar, syntax-

directed processors. Yet an examination of the language processing contexts for most

of the preceding languages shows that the roles of their processors are quite different.
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In some, suchas the compiler, macro-assembler, anddata languageprocessors, the

languageprocessor behavesas a translator. This modeis illustrated in Figure B-1.
In others, suchasthe commandand dataservice languageprocessors, the processor
must function in the interpretive mode, executingthe commandor service request as
it is recognized. This modeis illustrated in Figure B-2. Inscanhasbeendesigned
to function in either mode, dependingon the natureof the action graph which is con-

lation_ and interpretive aspects, as illustrated in Figure B-3.

An important by-product of using a syntax-directed processor for the language

scanning functions in a user-oriented system is that the system languages themselves

can become the object of experimentation. In order for this to occur, it must be easy

to introduce a new action graph (or a new version of an old one) into the system without

impact on existing system or user programs. In DM-1 this is done by using Inscan in

a translation mode to translate an action graph specified in a symbolic language called

STAG (STring Action Graph) into an absolute form called the Action Graph Table (AGT),

which is the form actually used by Inscan. Thus, the use of Inscan can be viewed as a

two-stage process. In the first stage, corresponding to assembly time, an AGT is

generated from a STAG source language specification (or "program"). In the second

stage, corresponding to execution time, a user language text is scanned by Inscan

under control of the AGT. These phases of user language processing are illustrated

in Figure B-4.

B. 2 LANGUAGES FOR LANGUAGE SPECIFICATION

B. 2.1 Metalanguage Requirements

Since our basic assumption was that a language should respond to, and adapt

to, the needs of the user, and since the syntax and semantics of languages are specified

in a metalanguage, the characteristics of an appropriate metalanguage will be examined.

Our interest is in the metalanguage as a design language for the user, rather than as

a form in which the language rules may be expressed internally in the processor, such

as transition list structure, transition matrix, substitution table, etc.
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Figure B-4. Phases of User Language Processing
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There are several properties that the metalanguage should have:

(1) It should be capable of expressing the notation and syntax
of a context-free language (Ref. 3).

(2) It should be capable of expressing the operations of a
push-down automaton which will generate the output
stream.

(3) It should be capable of expressing a subroutine call to
a processor which can take some interpretive action,
such as execute a command, respond to a modal operator
(or pseudo-op), or expand a macro-call in the output
stream.

To this list of necessary characteristics should be added the following de-

sirable features:

(i)

(2)

(3)

It should be capable of being represented in an easily
read graphical format that exhibits the structure of the
language much in the same way in which a flowchart
exhibits the structure of a program.

It should be capable of several levels of detail so that
the overall structure of the language can be expressed
before linguistic subtypes need be defined.

It should possess a readable linear string version
amenable to computer input, and it should be easy to
translate from the graphical to the linear version, and
vice versa.

B. 2.2 Metalanguage Examples

Some examples of specification languages are given in Figure B-5. The figure

shows how two simple languages, called jm and paren, are defined in four metalanguages.

(The jm example is taken from Steil (Ref. 12. ) Some examples of sentences in the

language jm are:

JOHN MARSHA, JOHN JOHN MARSHA MARSHA, etc.

Examples of paren are:

(), (() (())), (() ()), etc.
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JM

<JM>:: = JOHN MARSHA I

JOHN <JM> MARSHA

<JM> 0

PAREN

<PAREN> :: = ( )I (<PAREN STRING>)

<PAREN STRING>::=<PAREN> I

<PAREN><PA_EN .¢::;T_ I NG>

(A) INF

JOHN A MARSHA

<JM__MAR_H A

(B) TRANSITION DIAGRAM

<PAREN>O ( _ ) 0

<PAREN>

(C) SYNTAX CHART
IPAREN

l_l PAREN 1
I'PAREN I _ ISTRINGI

JOHN MARSHA

(D) ACTION GRAPH

Figure B-5. Examples of Syntax Specifications
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The metalanguages illustrated are:

(1) BNF (Ref. 1)

(2) Transition diagrams (Ref. 5)

(3) Syntax charts (Ref. 13)

(4) Action graphs.

Several general references books on metalanguages have appeared (Refs. 7, 9, 11).

The remainder of this paper will describe the operation of Inscan and its as-

sociated action graphs in some detail to show that action graphs effectively fulfill the

metalanguage requirements outlined previously.

B. 3 INSCAN AND ACTION GRAPHS

Inscan may be thought of as a processor that processes an input string in

accordance with a set of instructions contained in an action graph. Thus, Inscan

corresponds to a computer, the action graph to a program running in the computer,

and the input string to data being processed by the program. The nature of the pro-

cessing may vary widely, but two distinctive features of Inscan, to be described in

more detail next, make it particularly suited to a certain class of applications. These

features are the automatic scanning control with respect to the input string and the

recursive executive control with respect to the action graphs.

B. 3.1 The Input String

The input string is regarded as a string of symbols which is scanned from left

to right. The input pointer always points to the next symbol to be scanned. When

scanning begins, the input pointer is automatically set to the beginning of the input

string. Thereafter, it is moved in accordance with the dictates of the various action-

graph instructions.

B. 3.2 The Action Graph

The action graph controls the processing performed on the input string. As

seen by the Inscan processor the action graph is a table of instructions (the Action

Graph Table, or AGT). Each instruction specifies a test to be made, an action to be

performed, the establishment of alternate paths, or a transfer of control. When Inscan
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is called by a user, the user supplies the input string to be processed and the name of

the action graph to be used. Inscan retrieves the specified action graph from a library

and begins execution with the first instruction in the table. Thereafter, the instructions

are executed sequentially until a choice point is established or a transfer of control

Occurs.

The most basic instruction dealing with the input string is Scan {Read Input and

Match). This tests the input string, beginning at the current position of the input

pointer, for equality with a constant. The number of symbols tested is equal to the

number of symbols in the constant. If the input string matches the constant, the input

pointer is automatically advanced past the matched portion of the input string, so that

the next portion may now be tested. If it does not match, the pointer is not moved, so

that the same portion of the input string may be tested again.

A choice point indicates that several alternate paths may be taken at that point,

and specifies an ordered list of the addresses of the paths. After a choice point has

been established, control is transferred to the first path on the list. As long as the

choice point is in effect, the failure of any test will cause control to be transferred to

the next alternate path.

An action graph may at any time call for the execution of itself or of another

action graph. When this occurs, a return pointer to the calling action graph is stored

in a pushdown list, the new action graph is called in, and execution of it is begun at its

begirming. Certain points in an action graph are designated as end points. Vc_nen an

end point is reached, the execution of the action graph has been successfully concluded.

Inscan then "pops up" to the action graph on the next higher level and returns control to

the point indicated by the return pointer. If, however, during the execution of an action

graph some test fails and no alternate paths have been provided (or all alternatives have

been exhausted), the execution of the action graph terminates unsuccessfully. In this

case Inscan also pops up to the next higher level, but now returns control to the next

alternate choice path on the higher level.

When Inscan pops up from the highest level, control is returned to the calling

program, and appropriate status information is provided to indicate the result. A

failure at the highest level indicates a syntax error in the input string.

B-II
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B. 3.3 Specification of Action Graphs

There are several alternative ways in which action graphs may be described,

and these various representations may be translated into the Action Graph Table (AGT}

that is actually used by Inscan. One of these representations, the Pictorial Action

Graph, will be introduced now. Another representation, the String Action Graph

{STAG}, discussed in Paragraph B. 4.

A Pictorial Action Graph expresses the notation, syntax, and interpretation of

a language in a manner similar to that in which a flowchart describes a program.

Pictorial Action Graphs are composed of a number of symbols representing nodes in a

directed graph, the nodes being connected by directed branches. There is logically

one entrance to and one normal exit from each graph, but a node in the action graph

may represent a subgraph which is to be executed.

A list of the symbols used in Pictorial Action Graphs is shown in Figure B-6.

There is some leeway permitted in drawing action graphs, and a given language may be

expressed in more than one way.

The Action Graph Name symbol, used at the beginning of an action graph, con-

tains the name of the action graph being defined.

A subgraph execution may be indicated by several symbols, as shown in

Figure B-6. Use of the diamond symbol with an arrow to the subgraph exhibits the

overall structure most explicitly. The asterisk notation eliminates the need for the

arrow for recursive definitions. The hexagonal symbol names the subgraph to be

executed and is most directly translated to the STAG form.

The Scan symbol contains a literal quantity to be tested for at that point in the

action graph.

The Choice Point symbol indicates the establishment of alternate paths. It

always has one line entering it and as many lines leaving it as there are alternate

paths at that point. Choice points may also be indicated implicitly simply by having

several paths leaving a node of another type.

The End symbol is used to mark the normal termination points of an action

graph. It has one line entering and none leaving it.

B-12



-K _ )---

GRAPH NAME: v IS DEFINED BY PATH 8

SCAN: READ INPUT SYMBOL AND MATCH a

CHOICE: TRY ALTERNATIVES I AND 2

SUBGRAPH: EXECUTE GRAPH a AND RETURN

RECURSE: EXECUTE THIS GRAPH RECURSIVELY

AND RETURN

EXTERNAL ACTION: DO SUBROUTINE 7r

AND RETURN

INTERNAL ACTION: DO OPERATIONS

END: RETURN TO PARENT GRAPH

Figure B-6. Action Graph Symbols
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B. 3.4 An Action Graph Example

In order to illuminate the discussion of Inscan and action graphs, attention is

directed to the following example.

The example to be presented is a recognizer for a simple infix language in-

volving the letters A and B, the operators + and -, and the left and right parentheses.

The recognizer requires two action graphs, called NEST and TERM, both of which are

shown in Figure B-7.

The highest-level action graph is NEST. This is the graph that is identified to

Inscan by the user, and the one that Inscan first calls in and begins to execute. NEST

is the action graph as far as the user is concerned. The fact that it calls on other

action graphs is incidental.

To observe the action of Insean, let us follow the scanning of the input string

(A+B)-(A-B). To help follow the action, the nodes of the action graphs (see Figure B-7)

and the characters of the input string (see Figure B-8) have been numbered. When

Inscan is called, the user supplies the input string to be processed, and the name

(NEST) of the action graph to be used. Inscan sets the input pointer to character 1 of

the input string, "(", and retrieves action graph, NEST, from the action-graph

library. Execution begins at node 1 of the action graph. This node calls for the exe-

cution of another action graph called TERM. Consequently, a return pointer to the

NEST action graph is established and placed in Inscan's pushdown list. This pointer

will point to the next node of NEST to be executed, namely the choice point at node 2.

TERM is now called in and execution begins at node 1. This node establishes a three-

way choice of nodes 2, 3, and 5. Node 2 is tried first. This node specifies that the

current position of the input string should be tested for equality with the character

"A". The input pointer is still pointing to character 1, "(", since it has not yet been

moved and is not affected by the transfer of control from one action graph to another.

Therefore, since "(" is not equal to "A", the test fails. The input pointer is not

moved, and the next alternate path is tried, namely node 3. The test for B likewise

fails. Next, node 5 is tried. This test succeeds, so the input pointer is advanced to

character 2, the A, and control proceeds to node 6 of TERM. This calls for the

execution of another action graph, NEST, so a return pointer to node 7 of TERM is

placed in the pushdown list and NEST is called in. Node 1 of NEST calls for executing
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Figure B-7. Infix Recognizer
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( A + B ) -- ( A -- B )

1 2 3 4 5 6 7 8 9 10 11

Figure B-8. Sample Input String for the Infix Recognizer
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TERM, so a return pointer to node 2 of NEST is created and TERM is recalled.

Again, node 1 of TERM establishes a choice of 2, 3, and 5. At node 2, the test for A

now suceeds since the input pointer is at character 2. The input pointer is advanced to

character 3 and control goes to node 4. This is the termination symbol, indicating

that execution of the action graph, TERM, has been successfully concluded. Con-

sequently, Inscan pops up to the next higher level and follows the return pointer. This

points to node 2 of i_-ESY. Node 2 estabilshes a choice of three alternatives: 3, 5, and

9. Node 3 is tried first. This specifies a test for the character "v'. The input

pointer is still at character 3, which is "-_', so the test succeeds, the input pointer is

advanced to the next character, and control passes to node 4 of NEST.

The reader is left to complete the details of the example. Figure B-9 gives

a list of the various portions of the input string, in the order in which they are recog-

nized during the scan, together with the name of the action graph that recognizes them.

B. 3.5 Action Graph Constraints

From the above discussion it can be seen that Inscan is a "top-down" type of

analyzer in that it starts at the highest-level graph and does not scan the input until

directed by a graph to do so.

Although the algorithm for a top-down analyzer is quite simple and straight-

forward, it is known that they can be relatively inefficient (Reference 10). In order to

provide for efficient analysis, the following two constraints (Reference 5) were adopted

and must be observed in designing action graphs for Inscan:

(1 ) No- Loop Condition

There should be no cycle of subgraph references which
returns to the initial graph without scanning an input
symbol, for example,

(a) No action graph should execute itself recursively
without first reading an input symbol.

(b) No action graph should execute a subgraph which
executes the initial graph without first reading an

input symbol.
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PORTION OF STRING RECOGNIZED

A

B

A+B

(A+ B)

A

RECOGNIZED BY

TERM

TERM

NEST

TERM

TERM

B

A--B

(A -- B)

(A + B) -- (A- B)

TERM

NEST

TERM

NEST

Figure B-9. Operation of the Infix Recognizer
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(2) No-Backup Condition

The input symbols that can be scanned and matched at each
branch of a choice point should be disjoint sets; that is, it
should not be possible to satisfy an input symbol through
two different paths at a choice point.

B. 3.6 Action Points

In order to enable Inscan to take actions as well as to perform syntax checking,

the concept of action points has been developed. An action point is a node of an action

graph at which an action is taken. Since action points are embedded within the action

graph, they are automatically related to InscanVs scanning and control functions. That

is, when an action point is entered, the input pointer is at a certain place in the input

string, and control is at a certain point in an action graph on a certain level. Action

graphs take their name from their ability to contain action points.

Action points are classifiable into two types, called external and internal.

When an external action point is encountered, Inscan relinquishes control to an exter-

nal subroutine provided by the user. The subroutine may then take whatever action is

appropriate, and when finished, it is responsible for returning control to Inscan. Ap-

propriate conventions are established for communication between Inscan and the ex-

ternal subroutines.

At an internal action point, Inscan retains control and executes a specified

action command which is part of Inscan's own repertoire. The action commands are

aimed at the generation of an output string. The output string and the method of gen-

erating it are discussed more fully in the following paragraphs.

The symbols used to represent action points are shown in Figure B-6.

B. 3.7 The Output String

The output string, like the input string, is a string of symbols addressed by a

pointer. The output pointer always points to the next symbol position to be filled. When

a series of symbols is placed into the output string, the output pointer is automatically

advanced to the next position following the last one filled.
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The two most basic instructions for placing information in the output string

are Write and Copy. Write is used to write constant values into the output string.

Copy is used to copy portions of the input string to the output string. The portion of

the string to be copied is defined by setting the input pointer to the beginning of the

portion to be copied, then saving this setting (by means of a Save-Input-Pointer

command), setting the pointer to the next symbol following the end of the portion to be

copied, and performing the Copy command.

The use of action points and the generation of an output string, can be illus-

trated by returning to the example discussed previously. With the addition of only four

action points, the graphs of Figure B-7 can be converted from a syntax checker only to

a combined syntax checker and infix-to-suffix translator. The new graphs are shown in

Figure B-10. The actions can be described as follows: Whenever TERM is entered,

the position of the input pointer is saved. If the term recognized is a literal (A or B),

then after the recognition the pointer is advanced to the next symbol; so that when the

Copy operation occurs, the current and saved positions of the pointer are such that the

literal is copied to the output string. Consequently, the suffix translation of a literal

is the literal itself. If the term recognized is a parenthesized nest, no action is taken.

Therefore, the suffix translation of such a term is just the suffix translation of the nest.

When NEST is entered and an infix nest is recognized (i. e., a pair of terms

separated by a "_' or "-" sign), the sign is placed in the output string after the second

term has been recognized. Consequently the suffix translation of an infix nest consists

of the suffix translations of the two terms followed by the separating sign. If the nest

recognized is a single term, no action is taken. Therefore, the suffix translation of

such a nest is just the suffix translation of the term. Figure B-11 shows the com-

bined syntax checking and output-string generation performed by the action graphs for

the example. The final output string, representing the suffix translation of (A+B)-

(A-B), is AB+AB--.

B. 4 THE STRING LANGUAGE AND IMPLEMENTATION OF INSCAN

Work with Inscan has shown the need for a language which can readily express

action graphs but which can also be easily read and processed by a computer. To fill

this need, the String Action Graph (STAG) language has been devised. In STAG an

action graph is represented as a linear string of characters comprising a sentence.

B-20



/
\

NEST

/

TERM_.(__]_' TERM

5

--El-<TERM> (*_'_) <1

SAVE INPUT _._()__POI NTER 9/ COPY 1 (_]

NEST

Figure B-IO. Infix-to-Suffix Translator
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PORTION OF STRING

RECOGNIZED

A

B

A+B

(A+ B)

A

B

A--B

(A B)

(A + B) -- (A- B)

RECOGNIZED

BY

TERM

TERM

NEST

TERM

TERM

TERM

NEST

TERM

NEST

SYMBOL ADDED

TO OUTPUT STRING

A

B

+

A

B

Figure B-11. Operation of the Infix-to-Suffix Translator
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The sentence begins with the name of the action graph. The name is a string of alpha-

numeric characters and is set off from the body of the sentence by a colon. The body

of the sentence consists of a series of clauses, which contain the actual instructions

to be performed, and correspond to the nodes of a pictorial action graph. The clauses

are separated by semicolons, and the sentence is terminated by a period.

Since action graphs offer a convenient means of showing the syntax of linear

string languages, and since STAG is such a language, the syntax of STAG is shown by

the action graphs of Figure B-12. As shown in that figure, a clause consists of an

optional tag followed by a choice of various kinds of instructions. The tag is a number

used to identify the clause, and is used whenever the clause is to be referred to by

other clauses. If used, the tag is set off from the remainder of the clause by a colon.

Most of the instructions consist of an operator ("EXECUTE", "CHOICE", "GOOD",

etc. ) followed by an operand (NAME, LITERAL, CHOICE SPEC, etc. }. In some cases,

one or the other is omitted.

The correspondence between the STAG instructions and the various Inscan

operations described earlier is as follows: EXECUTE calls for the execution of

another action graph, the name of which immediately follows. RECURSE specifies

that the current action graph should be executed recursively. The Scan operation is

specified simply by writing the constant to be tested for. This constant is written as

a literal, which is a string of alphanumeric characters enclosed in quotation marks.

CHOICE indicates the establishment of a choice point. The various alternative paths

are listed in the choice specification, which consists of a series of tags separated by

commas and enclosed in parentheses. GOOD represents the successful termination of

an action graph. GOTO specifies a transfer of control to another clause of the action

graph, the tag of which is written immediately after the GOTO. CALL calls for the

execution of an external action point, the name of which immediately follows. The

remaining instructions, WRITE, COPY, and SAVE INPUT POINTER, correspond to

the various internal action points, described previously, for generating an output

string. In the case of WRITE, the constant to be stored is described as a literal and

immediately follows the WRITE. COPY and SAVE INPUT POINTER do not require any

operand.
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ACTION >GRAPH

"--['- < NAME _.__CLAUSE_< LAUS > I

_ EXECUTE_--_ NAME _---_
RECURSE I
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--_ GOOD t

I GOTO_ _AG)--

COPY

SAVE INPUT POINTER _--

Figure B- 12. STAG Syntax
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NEST:

TERM:

EXECUTE TERM; CHOICE (3, 5, 9) ;

II II

3: + ; EXECUTE TERM; WRITE "+"; GOOD;

II II

5: -- ; EXECUTE TERM; WRITE "7'. 1

9: GOOD.

SAVE INPUT POINTER; CHOICE (2, 3, 5) ;

2: "A"', 9: COPY; GOOD;

3: "B"; GOTO 9;

5: "("; EXECUTE NEST;")" ; GOOD.

Figure B-13. STAG -- Language Action Graphs for the Infix-to-Suffix Translator
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To illustrate the use of the string language, the infix-to-suffix translator of

Figure B-10 has been translated into the string language. The result is shown in

Figure B- 13.

Just as it was possible to describe the syntax of the String Action Graph

language by means of an action graph, it is also possible to use an action graph to

describe the actions necessary to translate the string language into the Action Graph

Table actually processed by Inscan. The relationship of STAG to the AGT is approxi-

mately that of assembly language to machine language. In the AGT, instructions are

represented by numeric codes, and tags by addresses relative to the beginning of the

table. Literals are placed at the end of the table and are referred to by address.

The process of translating STAG into an AGT, like the process of assembly,

basically consists of generating the AGT instructions, constructing a "symbol table"

relating tags to relative addresses, and then filling the tag references into the AGT.

Most of the steps of this process can be handled by action graphs. The approach being

taken is to write the necessary graphs in STAG and then hand-translate them into AGT's.

These AGT's, processed by Inscan, can then serve as a STAG-to-AGT translator.

B. 5 SUMMARY AND CONCLUSIONS

In summary, Inscan, together with the action graphs it processes, is a con-

venient tool for expressing the syntax of linear languages and for specifying the actions

necessary to translate or otherwise process the languages. Inscan has been imple-

mented for two different projects at AUERBACH. One of these implementations pro-

vided only external action points and the other only internal action points. The combined

configuration, however, is clearly the most general and potentially the most powerful.

Generalized language processors have not been used as widely as possible in

user-oriented systems. One of the main reasons for this has been the slow development

of languages which combine the ability to specify the syntax and semantics of languages

in convenient forms. It is felt that action graphs provide this capability. The Inscan

approach to language processor design separates the language scanning and translation

function from the details of post-translation processing and facilitates experimentation

with the design of languages.
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